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Abstract 

 

The increasing share of electricity generation from wind power is accompanying by 

installations of wind farms at new and suitable locations. Analyzing the local wind conditions 

often requires time- and cost-intensive measurements. Therefore, methods are developed 

to pre-assess the quality of new wind farm locations. 

The aim of this thesis is to use MERRA reanalysis data in a wind power simulation model in 

order to assess the validity of the MERRA data by comparison with real production data. The 

wind power production of 4 wind farms (1 in Austria and 3 in New Zealand) are compared 

with the simulation results. At each wind farm, the wind speeds (of the point in the MERRA 

dataset closest to the wind farm) are extrapolated to the hub height of the turbines by using 

the empirical derived “power law”. The simulation of the production uses the power curves 

of the installed turbines (of each wind farm), which represent the relation between wind 

speed and electricity generation. Several temporal resolutions – from hourly to annual – are 

analyzed and compared between the 4 wind farms. 

Results show that the simulation model does over- and underestimate the total production 

depending on the location. Correlation coefficients for hourly production are between 0.67 

and 0.75 and increase between 0.74 and 0.85 for daily production. In general, low 

production events are overestimated and high production events are underestimated by the 

simulation model, although there are exceptions for a production close to rated or zero 

power. This is a consequence of the low spatial resolution and the utilized smoothed 

elevation model in MERRA. This could be overcome by the use of an empirical derived 

optimization model. Hence, the MERRA data has limited suitability for the simulation of 

single wind farm locations, but it could be useful for the simulation of larger spatial extents. 
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Kurzfassung 

 

Der steigende Anteil von Windkraft an der Elektrizitätsproduktion bedingt die Errichtung von 

zusätzlichen Windparks an neuen und geeigneten Standorten. Um die lokalen 

Windverhältnisse festzustellen, sind meist zeit- und kostenintensive Messungen notwendig. 

Deshalb werden Methoden entwickelt, um die Qualität von neuen Standorten bereits im 

Vorfeld abschätzen. 

Das Ziel der Masterarbeit ist es MERRA Reanalyse Daten in einem Windkraft 

Simulationsmodell zu verwenden, um die Validität der MERRA Daten anhand eines 

Vergleiches mit realen Produktionsdaten zu bestimmen. Die Windkraftproduktion von 4 

Windparks (1 in Österreich und 3 in Neuseeland) wurde mit der simulierten Produktion 

verglichen. Für jeden Windpark wurden die Windgeschwindigkeiten (des am nächsten 

gelegenen Punktes des MERRA Datensatz zum jeweiligen Windpark) mit Hilfe des empirisch 

abgeleiteten „Power Law“ auf die Hubhöhe der Turbinen extrapoliert. Im Simulationsmodell 

wurden die Leistungskurven der installierten Turbinen jedes einzelnen Windparks 

verwendet, welche den Zusammenhang zwischen Windgeschwindigkeit und 

Elektrizitätsproduktion darstellen. Verschiedene zeitliche Auflösungen – von stündlich bis 

jährlich – wurden analysiert und mit allen 4 Windparks verglichen. 

Die Ergebnisse zeigen, dass das Simulationsmodell abhängig vom Standort die 

Gesamtproduktion sowohl unterschätzt als auch überschätzt. Die Korrelationskoeffizienten 

für die stündliche Produktion liegen zwischen 0.67 und 0.75 und steigen bei einer täglichen 

Auflösung zwischen 0.74 und 0.85 an. Im Simulationsmodell werden geringere Produktionen 

überschätzt und höhere unterschätzt, obwohl es nahe der Nennleistung als auch bei null 

Leistung Ausnahmen gibt. Das ist eine Konsequenz der geringen räumlichen Auflösung und 

dem eingesetzten geglätteten Höhenmodell von MERRA. Dieses Problem könnte mit einem 

empirisch abgeleiteten Optimierungsmodell gelöst werden. Die MERRA Daten sind nur 

bedingt geeignet einzelne lokale Windparks zu simulieren, jedoch dürfte sich diese für 

größere räumliche Einheiten verbessern.  
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1. INTRODUCTION 

As long as we do not discover any new kind of technology that can deliver huge amounts of 

useful energy, preferably with little or no environmental impact, we will be dependent on 

the technologies that are known and used nowadays. The rapid development from an 

agricultural to an industrial society went along with increases in wealth, population, energy 

consumption, environmental degradation and technological change. Sustainably managing 

the trade-off between those variables is an important challenge, in particular as wealth is to 

some extent associated with energy consumption or its availability. Therefore, access to 

energy should be made universal in a long-term perspective.  

Due to the fact that fossil energy sources or even Uranium are finite, technologies that use 

renewable resources are therefore an important option for the future. The most obvious 

advantage of renewable energy sources is their renewability, which means “exploiting flows, 

rather than static resources” [1]. Another advantage of renewable energy technologies over 

fossil source based technologies is their lower environmental impact, in particular with 

respect to greenhouse gas emissions, which are strongly related to climate change [2]. 

Although climate has never been constant in any way – measured in earth´s history – the 

unusual part of currently observed global warming is that most likely humans are 

responsible for it. There are several natural effects, like changes in solar activity or the 

geometry of the earth´s orbit, volcanism, et cetera, that are considered to be the main 

causes of climate changes [2]. Nevertheless, research results point to a mankind-made global 

warming due to greenhouse gas (GHG) emissions [1]. Although there are still uncertainties 

about the accuracy of projections, risks associated with climate change impacts, in particular 

in the fat tail of impact distributions, are too high. Likewise, geoengineering approaches such 

as spraying soot in the Arctic or injecting radiation-absorbing dust in the atmosphere are 

associated with high risks [1]. A less risky way of dealing with climate change is the 

development of renewable energies.  

Since the energy sector is responsible for a huge share of the total GHG emissions, there is a 

big potential for restricting them. Additionally, it is a sector with a constant high growth rate. 

A global growth rate of 36% between 2000 and 2010 and a share of about 30% of total GHG 

emissions are alarming signals especially if a closer look on the energy sector is being taken 

[3]. Electricity and heat generation is the fastest growing share within the energy sector – 

from 58.9% in 1970 to 72.6% in 2010. Responsible for this huge share of GHG emissions is 

the fact that 40.6% of generated electricity comes from coal, 22.3% from natural gas and 
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4.5% from oil products [4]. This means that more than two thirds of the global electricity 

generation comes from fossil energy carriers.  

For the European Union (EU-28), the share of conventional fossil-based resources in total 

electricity production in 2015 was 48% and nuclear power had a share of 26%. Quite the 

same amount as from nuclear power came from renewables, whereby 12% of the total 

electricity production came from hydro, 10% from wind and the last 4% are spread amongst 

several renewable technologies like photovoltaic, biomass or geothermal. One of the highest 

growth rates within the renewables comes from wind power. From 2014 to 2015, an 

increase of 21.8% within the EU-28 shows the importance of wind power as a technology to 

replace fossil energy based technologies [5]. It is quite obvious that wind power is one of the 

most promising paths to generate electricity in a sustainable way at relatively low costs. 

Building new wind power plants or wind farms requires, amongst many other factors, 

locations that can provide good wind conditions. Beside the country specific feed-in tariffs 

and subsidies, the wind conditions are probably the most important factor for the successful 

operation of a wind farm. Since measuring wind speeds at different heights and locations is 

costly and time-intensive, an alternative, time and cost saving method to figure out the 

potential of electricity generation would be very useful. The method presented in this thesis 

uses long term wind speed data from reanalysis datasets to develop a simulation model and 

compare afterwards the simulated electricity generation with the real electricity output. 

Four wind farms, 1 in Austria and 3 in New Zealand are examined. The wind speed data is 

taken from the MERRA-project, which is a reanalysis product developed by NASA. 

The main goal of this thesis is to examine how well the MERRA-data perform on a local scale 

with regard to simulating hourly wind power production. The MERRA-Dataset (Modern Era-

Retrospective Analysis for Research and Applications) is a reanalysis product, which 

processes meteorological observations, respectively records from satellites or conventional 

observations (e.g. dropsondes, radiosondes, PIBAL winds, wind profiles) in the past, and 

interpolates them on a global grid with      latitude, 2/3  longitude and 72 vertical levels. In 

sum the MERRA-grid consists of 183.600 points - 540 points longitudinal times 340 points 

latitudinal [6]. It was developed by the Global Modelling and Assimilation Office (GMAO) 

from NASA. A primary objective is to put observations from EOS (NASA´s Earth Observing 

System) satellites into a climatic context. The observations and the reanalysis reach back to 

1979, whereby MERRA was developed in 3 different stages, respectively data-streams. The 

current stream runs since 2001 and delivers a nearly real-time tool for climate analysis. 

Several different products are available and can be accessed online [7]. The product and files 

used here are described more precisely in chapter 2.2.1./2.2.3.  

The advantage of using reanalysis-data compared to measured data is on the one hand that 

the data is available without any measurements gaps since 1979 and on the other hand that 

the data is available globally and if interpolated horizontally for each desired location. The 

available time-span is growing every day, as the data is continuously updated. Also, unlike 
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real production data, wind speeds can be used to simulate the production for different types 

of turbines. If data quality is sufficient, a simulation model can be developed to reproduce 

the wind speeds or respectively wind power generation for any location with a much lower 

effort than processing measured data. Those time series can be used to detect “wind-hot-

spots” or obtain a pre-assessment of a potential wind farm location. Also, they can be used 

in large scale integration studies to assess the optimal integration of wind power in the 

power system. 

The simulation of wind power production by means of wind speeds of the MERRA-data and 

the specific power curves of the turbines used in the wind farms should show comparable 

statistical characteristics to the real production. Hitherto, most of the studies which used 

MERRA data for simulating wind power or photovoltaic production or comparing wind 

speeds focused on larger areas, e.g. [8]–[10]. In order to validate the data and to estimate 

the value of the MERRA-data for this specific application it has to be figured out where the 

weaknesses or strengths are. Are productions or respectively wind speeds over- or 

underestimated? How good can the simulation for different temporal resolutions reflect the 

real production? Are there differences with regard to the time profile or wind speeds, 

respectively electricity generation? Are seasonality and the time profile comparable? In 

order to answer these questions, a comparison of the simulated production with real 

production data of 4 wind farms is carried out.  

Of course there are known open issues with respect to the reanalysis data, e.g. they are time 

averaged, the topology is smoothed and horizontal interpolation is applied to the MERRA 

data [7]. These issues have, of course, an influence on the quality of the data and 

furthermore the results. Nevertheless the method used and presented here should provide 

an alternative to measuring wind speeds conventionally. Future extensions can be 

implemented later to further increase the quality of simulation results, as further 

improvements are not in the focus of this thesis. 

Chapter 2 takes a look at the characteristics of renewables and their role in energy system 

modelling, especially for systems with a high share of renewables. This chapter closes with a 

brief review of studies that used MERRA-data. Chapter 3 describes the used data and the 

methods to manipulate the data as well as the development of a simulation model that uses 

MERRA-data to simulate hourly production of 4 wind farms. It closes with the methods used 

for analysing and evaluating the results of the simulation model. Chapter 4 shows results and 

the evaluation of the simulation model. Beside the analysis of the hourly data, several time 

spans are aggregated and analysed with regard to statistical significance. The thesis closes 

with a discussion and the conclusions of the results. 
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2. REVIEW ON THE USE OF REANALYSIS DATA 

Several studies have already used reanalysis data to model the integration of renewables in 

energy systems. Chapter 2.1 shortly describes the basics of energy system models and 

discusses a few studies that used reanalysis data for developing a model which reflects an 

ideal mix of renewable energy sources for different areas, respectively countries. Chapter 

2.2 discusses a few studies that used MERRA data for simulating electricity generation by 

wind power or photovoltaics, whereby these studies also focus on whole countries. In 

contrast, the analysis of the quality of MERRA data for simulating single wind farms is 

assessed in this thesis. 

2.1. MODELLING ENERGY SYSTEMS WITH LARGE SHARES OF 

RENEWABLE ENERGIES 

Energy conversion- or electricity generation from renewable resources, especially from wind, 

direct sun radiation or water, is dependent on climatic conditions. The annual hours of 

sunlight, the amount of precipitation or wind conditions determine how much electricity 

from renewable energy sources can be produced and at which moment. A huge challenge 

for energy systems that are mainly based on renewables is the volatility of production due to 

the dependency on natural processes. This can be a serious problem for the security of 

supply. Where, how and at which moment electricity can be produced or stored in the most 

efficient way, will be a huge and increasing challenge in the future. 

To deal with it, highly accurate and solid data about solar irradiance, wind or precipitation on 

site make it possible to create a regionally adapted infrastructure, which can generate 

electricity as stable and predictable as possible. 

Energy system models are principally based on several data inputs, which represent the 

present state of the system or project system states into the future. They include factors like 

pricing, characteristics and availability of technologies or energy carriers or fluctuations of 

generation in time or the total demand and supply of energy respectively electricity. The 

fluctuations of generation in time from renewables due to the dependency on 

meteorological conditions have a serious impact on energy system models, because they 

affect the optimal expansion of power plants, storage infrastructure or grids [11]. Hence it is 

very important to estimate the generation over different time periods as well as possible. 

Several studies are available (for example [12], [13]) that assessed optimal mixes of 
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renewables in the electricity supply. Most energy system models are made for an hourly 

resolution. For modelling the generation of renewables, different input data is used, like real 

feed-in data from generation, measurements from weather stations, satellite measurements 

or reanalysis data [11].  

A study [14] from the Harvard China Project claims that the whole electricity production of 

China could be covered by wind power for only “slightly higher costs” than from fossil fuels 

but they only took annual production into account and did not match demand and supply 

continuously. Backup power, storage or transmission infrastructure was not considered, 

which is necessary to balance fluctuations. Hence, Huber et al. [13] developed a model to 

figure out the optimal mix of variable renewable energy sources (VRE) for China in an hourly 

resolution. MERRA data was used to calculate the hourly wind and PV generation for all 

regions of China. After calculating the hourly electricity demand, several scenarios with 

varying shares of VRE were developed, resulting in different residual loads, capacity credits 

and storage requirements. It was shown that 20% of the total electricity consumption can be 

supplied by VRE, resulting in nearly no positive residual loads at all and hence no storage 

facilities needed to be installed. The problem arises with higher shares of VRE: If wind and 

PV would produce 100% of the annual consumption, only 50-75% of the demand on hourly 

basis could be covered due to the lack of storage possibilities. The optimal mix of wind and 

PV depends on the installed capacity of VRE. For shares of VRE over 50% “defining the 

optimal mix becomes complex and uncertain” since the storage requirements increase to 

non-viable high values [13]. Nonetheless they come up with a suggestion: Planners should 

pursue a mix of 70% wind and 30% PV. 

Another attempt was made by Schmidt et al. [12], in which the authors assessed the optimal 

mix of PV, wind and hydro power for Brazil in 2034 in order to achieve a low carbon 

electricity supply and avoid an increase of thermal power generation. It is shown, that a mix 

of wind, PV and hydro power would reduce risks compared to a hydro-thermal only system. 

An optimization model determines the optimal mix of wind power, PV and hydro power by 

simultaneously reducing the thermal power dispatch. Afterwards a simulation model was 

used to assess the reliability of the system. In other words, the authors assessed if demand 

and supply can be matched in an operational model without foresight by using the power 

mix determined by the optimization model. The data used for the simulation of PV, wind 

power and hydro power production includes solar irradiation, wind speeds and water 

inflows. Wind speed data for example was used from the ECMWF (European Centre for 

Medium-Range Weather Forecasts) with a spatial resolution of 0.75x0.75 degrees, 3 hourly 

intervals from 1979 to 2014 and from NCAR/NCEP (National Centres for Environmental 

Prediction and the National Centre for Atmospheric Research) with a spatial resolution of 

2.5x2.5 degrees, 6 hourly intervals and a time period from 1948-2014. Validation showed 

that the data from ECMWF could reproduce solar irradiation and wind speeds best and was 

therefore used for the whole model. 
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In this thesis, reanalysis data from NASA (MERRA-reanalysis) is used and validated. The 

MERRA dataset was used because the necessary parameters are available in hourly-

resolution. Another product would have been the ERA-Interim from the ECMWF (European 

Centre for Medium-Range Weather Forecasts) but the time resolution is lower at 3-hours . 

With the help of reanalysis, all kind of meteorological parameters can be reconstructed, 

which have not been measured, whereby information or measurement gaps can be closed. 

Hence this offers an instrument to develop models for energy production systems or at least 

reanalysis data can be integrated in an energy production model. Therefore it is crucial to 

know how well the reanalysis data perform and how reliable they are. 

2.2. STUDIES ASSESSING MERRA DATA QUALITY 

There have already been made a few studies which used reanalysis- or especially MERRA-

data to - simulate wind velocities, wind power or photovoltaic production and compare the 

simulation to real production data. Some examples can be found in references [8]–[10], [15], 

[16]. 

A very well performing model was developed by Bergkvist and Olauson [8] which compared 

data of total Swedish power generation, taken from the Swedish TSO (Transmission System 

Operators) with simulated data, using MERRA-data. A mean absolute error in hourly energy 

of 2.9% and a RMS (note: root mean square) error of 3.8% showed the good performance of 

the data set. The authors used power curve smoothing and bias correction to achieve these 

results. The power curve smoothing included “higher power around cut-in wind speed, lower 

power around rated wind speed and a more smooth transition from rated to zero power at 

cut-out wind speed”. The power curve was made as a function of the incoming wind (power) 

and therefore external and internal losses could be figured out much better. The bias 

correction included seasonal and diurnal bias for the aggregated production. It is worth to 

mention that the low errors are only valid for the whole of Sweden and not for sub-areas or 

single wind farms. The simulation of smaller areas resulted in larger errors. 

Ritter et al. [16] compared wind speeds from 7 wind farms with wind speeds from MERRA-

data and developed a production map that illustrates the estimated yearly production 

potential for whole Germany. This could be useful for governments, operators or investors 

as a pre-assessment and to check the suitability of a location. 

A publication of Cannon et al. [9] demonstrates that the MERRA reanalysis data cannot only 

be used for long-term investigation but also to estimate the frequency of (short-lived) 

extreme events. Wind speeds of MERRA and MIDAS (Met Office Integrated Data Archive 

System – containing meteorological data from the United Kingdom) were compared and the 
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results showed that MERRA data generally underestimates high wind speeds and 

overestimates low wind speeds. The underestimation for high wind speeds is slightly 

removed if only stations up to 300m altitude are taken into account, which is a consequence 

of smoothing topography in MERRA-data. However, mean wind speeds are reproduced quite 

accurately. Extreme events, which are classified by the CF (capacity factor) into 3 thresholds 

for high and low CF´s, achieve a quite good agreement between MERRA and MIDAS. 

However, long-lasting events are usually overestimated whereas short-lasting events are 

mostly underestimated by MERRA. Even the rarest and most extreme persistent events 

could be reproduced quite well in most of the cases. Nevertheless this applies only to 

aggregated-data for the whole of Great Britain. And it is also mentioned that for ramps in 

production, MERRA tends to underestimate these ramps, therefore the authors suggest 

applying dynamical downscaling to the MERRA data. 

MERRA data can also be used to model photovoltaic power production as Juruž et al. [10] 

demonstrate. In this study, shortwave fluxes from different data-sources – in-situ 

measurements, HelioClim-1 and HelioClim-3 – were compared with MERRA-data. Although 

MERRA overestimated irradiance, the correlation is improved after a bias correction. The 

authors conclude that MERRA is useful for studying interannual variability for medium and 

long-term planning of photovoltaic production. 
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3. DATA & METHODS 

The primary objective of this thesis is to determine how well the data of the MERRA 

reanalysis performs in the simulation of wind power production. The method which was 

used here is illustrated step by step in figure 3.  

 

 

Figure 1: Graphical Overview of the Validation Process, Source: Own Figure 

The MERRA data is prepared in R-Studio in order to calculate wind speeds, interpolate them 

to the location of the wind farm and extrapolate them to the hub height of the turbines. 

Afterwards the electricity production can be simulated for each wind farm by using the 

power curves of the installed turbines. The result is a simulated hourly production for 3 

Wind farms in New Zealand and 1 in Austria. A comparison and statistical analysis of the 

technical model with the real production data should show how well the MERRA-data 

performs. The statistical methods for comparing real and simulated production are 

described in chapter 3.3 and the results are presented in chapter 4. The simulation model 

was developed with R-Studio Version 0.99.491 plus the additional packages “lubridate”, 

”ncdf4”, ”plotly” and “psychometric”. The R-version, necessary for R-Studio to work, was 

3.2.5.  

Comparison & 
Model Validation 

 Conditioning of 

MERRA Files in 

RStudio: 

Calculate/extrapolate 

wind speeds 

  

 Simulate Power 

Generation with 

Power Curves 

 

 Match Time Zones 

and Power Output 

Data 

 

 Statistical analysis of 

several time periods 
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3.1. REAL PRODUCTION DATA 

The examined wind farms are shortly described in the subsequent chapters. The 

characteristics of the installed turbines are shown and the production data is examined to 

remove data omissions or errors. Production gaps and erroneous data could bias the results 

and were dropped therefore. 

There is one production data-file for each region – 1 file for Austria with 1 wind farm and 1 

file for New Zealand with 7 wind farms, whereby only 3 are examined. The file for New 

Zealand contains the hourly production for those 7 wind farms with different time spans 

because the wind farms have been built at different times. 

3.1.1. WIND FARM IN AUSTRIA 

Due to data protection requirements, there cannot be given precise information about the 

wind farm in Austria. The operator, exact production information, number of turbines as 

well as the exact location cannot be made public.  

The existing data include the records of a power feed counter in which the electricity 

production of the wind power plants, using Enercon E70-E4 turbines with a hub height of 

86m and 2.050kW maximum power each, are recorded. The records reach from 01.10.2006 

at 0:00 to 17.12.2012 at 24:00 and represent the quarter-hourly production. In the first 

10.000 hours, the mean in production is significantly lower than in the remaining hours, as 

shown in Figure 2. The reason is not known, so the data was dropped to not distort results. 1  

Due to the fact that the simulation is done in hourly intervals, the real production data is 

aggregated to full hours, e.g. from 00:00 to 01:00, 01:00 to 02:00. 

The MERRA-data are collections which consist of a sequence of data averaged over an 

interval and a certain time, which in this case is an hourly interval at 00:30 GMT, 01:30 GMT, 

02:30 GMT, therefore it makes sense to aggregate the real data to full hours, so that the 

MERRA-data behaves analogous to the real data.  

                                                      
1
 The production data in Figure 2 were normalized over the maximum production due to data protection 

requirements. 
2
 It has to be mentioned that averaged values cannot reflect the production exactly due to the non-linear 
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Figure 2: Normalized electricity production of Austrian wind farm from 01.10.2006 to 17.12.2012, 
source: own diagram 

3.1.2. WIND FARMS IN NEW ZEALAND 

3 Wind farms have been studied: White Hill, Mahinerangi and Te Apiti. For the wind farms in 

New Zealand, there are no data protection restrictions. 

The dataset for New Zealand includes the hourly production for each wind farm in MWh. 

The time period for the production data for each wind farm is different, because they have 

been built or put into operation at different times. The time series of the wind farms in the 

used Excel-sheet all end at the same date, 31.03.2013. 

The choice for the 3 wind farms (out of the 7 existing datasets for all wind farms in New 

Zealand) has its reasons in the geographical location of the wind farms and the availability of 

further information about the wind farm, for example installed turbines or information 

about the turbines. No power curve could be found for the installed turbines of the Tararua 

wind farm and it is located very close to Te Apiti, so it was not considered for further studies. 

For Te Rere Hau it was not possible to figure out, which turbines are installed. Project West 

Wind and the Te Uku wind farms were also an option but the decision fell on Te Apiti 

because of the long production data (the longest of all wind farms) and its location on the 

North Island. White Hill was put into operation on June 2007 so there was also a long 

production data set available and it is unlike Te Apiti located on the South Island. 

Mahinerangi has a rather short period of production data, but it was chosen as the third 
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wind farm because it´s almost on the same latitude like White Hill, which could results in a 

better comparison of these 2 wind farms. Figure 2 shows the location of the 3 wind farms in 

New Zealand. 

 

 

Figure 3: Location of the studied wind farms in New Zealand, source: maps.google.com 

3.1.2.1. WHITE HILL 

This wind farm consists of 29 wind power plants using Vestas V80-2.0MW turbines with a 

hub height of 68m. The operator is “Meridian Energy”. The point used for the simulation has 

the coordinates             and               [17].  

All together the wind farm has a capacity of 58MW. The park started to operate in June 

2007. Figure 3 shows that it took about 3.000 hours to reach full production. A lack of wind is 

not very likely, as the increase in the mean is very regular and the MERRA wind speeds are 

consistently above 10m/s up to more than 15m/s. Compared to the subsequent production, 

some sort of a start-up process is the most likely event. So the first 3.000 hours are excluded 

from the dataset. Also the time span from 31.000h to 32.750h is excluded because it´s 

assumed that there was some maintenance processes, since in most of this time there has 



 

12 
 

not been any production. A similar event is not observed in the remaining periods and due 

to the fact that the MERRA wind speeds during this time are consistently above 5m/s and go 

up to nearly 20m/s, it is very likely that it was not a lack of wind that caused this no-

production period. As the operator states, the location suits very well for a wind farm, since 

the “Southland” area has strong, constant winds [18].  

 

Figure 4: Electricity production White Hill Wind Farm from 01.06.2007 to 31.03.2013, source: own 
diagram 

3.1.2.2. MAHINERANGI 

The operator of the wind farm is “TrustPower”. It is located approximately 70km west of 

Dunedin and started production in March 2011. It is the wind farm with the shortest 

production time. It consists of 12 wind power plants with Vestas-V90 3MW turbines each 

with a hub height of 80m. Until now it has only 36MW of installed capacity, which could be 

extended to 200MW due to a permission of the operator [19] [20]. 

The production data has some gaps in it, which can be seen in figure 4, that´s why the first 

1.200 hours, the time period between production hour 3.200 and 3.500 and between 4.600 

and 4.800 are not examined.  The first 1.200 hours are assumed to reflect a starting process 

since the mean production is significantly lower than in the periods afterwards. The gaps 

with mostly zero production between hour 3.200 and 3.500 as well as between 4.600 and 

4.800 are assumed to exist because of maintenance processes, since the reanalysis data 
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show wind speeds from 3 to 12m/s during this time, which would be more than sufficient 

wind speeds for a normal production profile. 

The whole wind farm extends on an area of 17.23km² - the point used for the simulation has 

been taken from [21] and has the coordinates              and          . 

 

Figure 5: Part of the electricity production in the Mahinerangi Wind Farm from 04.02.2011 to 
31.03.2013, source: own diagram 

3.1.2.3. TE APITI 

Since 26.07.2004, electricity is produced in this wind farm. The simulated period starts on 

01.01.2005, therefore the production of 2004 is not been taken into account. It´s still the 

longest observation period of all examined wind farms. It´s located on the North Island of 

New Zealand, north-east of Palmerston and north of the “Manawatu” gorge. The 

extraordinary wind conditions, even for international standards, are because of the 

“Manawatu” gorge, which functions as a wind funnel, as mentioned in [22]. The wind farm 

extends on an area of 11.5km². 

The point which was used for the simulation has been taken from [23] and has the 

coordinates              and             . 

This wind farm was the first that fed the electricity not only in locally but also in the national 

transmission grid. 
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It consists of 55 wind power plants using Vestas / Micon NM72-1650 turbines, each with a 

power of 1650kW and a hub height of 70m. The whole wind farm therefore has a capacity of 

90.75MW. The turbine was originally constructed by Micon, but due to a fusion of Micon 

and Vestas, Vestas is now listed as manufacturer [22], [24], [25]. 

 

 

Figure 6: Electricity production of Te Apiti Wind farm from 26.07.2004 to 31.03.2013, source: own 
diagram 

 

As Figure 5 shows, there is a time period with reduced production, for unknown reasons, 

from production hour 13.500 to 24.000. This time span is not examined and is removed from 

the dataset. And, as mentioned before, the production from 2004 is also not used because 

the MERRA dataset downloaded starts in 2005, hence the starting-up process of the wind 

farm, which can be observed in Figure 5, is also removed. 
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3.2. A SIMULATION MODEL FOR WIND FARMS 

This chapter describes the necessary steps to develop a model that can simulate the wind 

speeds respectively the production of the 4 mentioned wind farms with the MERRA-data. At 

first, the MERRA-files are described and the relation between wind velocity and electricity 

production is mentioned. In order to use the MERRA-files, they have to be prepared, which is 

done in RStudio. Functions for reading the files, as well as the extrapolation of the wind 

speeds from the given height of the MERRA-files to the hub height of the turbines are 

described. Afterwards, a data-frame with the extrapolated wind speeds, the real production 

and the matched timestamps is generated in order to be able to simulate the production by 

means of the power curves and wind speeds. 

3.2.1. ACCESS AND CHARACTERISTIC OF MERRA-FILES 

There are several products of MERRA offered and available on 

http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl. First the product was chosen, 

afterwards the access-method “Data Subsetter” and further “Daily Product”.  

The access can also be done directly on http://disc.sci.gsfc.nasa.gov/daac-

bin/FTPSubset.pl?LOOKUPID_List=MAT1NXSLV. For this study, the product “IAU 2d 

atmospheric single-layer diagnostics” was used. Further information is given in chapter 2.2.2. 

Two Datasets were obtained – one for New Zealand and one for Austria. The spatial 

boundary for the Austrian dataset is between      and      latitude and         and 

     longitude. The New Zealand dataset has the spatial boundaries         to         

latitude and          to       longitude. The wind farms are all located between these 

boundaries and the boundaries were chosen generously because the used interpolation 

method was not set before the download of the data.  

http://disc.sci.gsfc.nasa.gov/daac-bin/DataHoldings.pl
http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl?LOOKUPID_List=MAT1NXSLV
http://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl?LOOKUPID_List=MAT1NXSLV
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The time span was determined from 01.01.2005 to 31.12.2014 for each dataset and the 

chosen parameters were: 

U10M ........ Eastward wind at 10 m above displacement height  

U2M ......... Eastward wind at 2 m above the displacement height 

U50M ........ Eastward wind at 50 m above surface 

V10M ........ Northward wind at 10 m above the displacement height 

V2M ......... Northward wind at 2 m above the displacement height 

V50M ........ Northward wind at 50 m above surface 

DISPH ....... Displacement height 

“NetCDF” was set as the output file format. After the file search is finished, a text file with a 

list of URL´s is available. Each URL represents a file and can be downloaded manually or 

automatically with the application “wget”. Therefore it is necessary to copy the text file into 

the folder in which “wget” was installed and afterwards type in the command “wget --

content-disposition –i >name of the text file<” into the Windows command prompt and the 

download process starts. For the chosen time span of 10 years, this results in      files 

respectively days. 

The files contain hourly averaged values for the central time of the hourly interval. This 

means the times are 00:30, 01:30, 02:30 etc. GMT (Greenwich Mean Time). The time shift to 

the locations of the wind farms, and the presence or absence of day light saving time, have 

to be considered. This is shown more precisely in chapter 2.2.3. 

One file contains the values of the chosen parameters for each hour of a day and each point 

of the MERRA-grid that is located between the determined boundaries of the datasets. For 

the Austrian dataset, this results in 12 points longitudinal and 10 points latitudinal which 

means there are 120 points. For the New Zealand dataset this results in 759 points, 23 points 

longitudinal and 33 points latitudinal. This implies that the Austrian dataset covers an area of 

8 degrees longitude and 5 degrees latitude, because the MERRA-grid has a resolution of 0.5° 

latitude and 0.66° longitude. The parameters are wind vectors (U/V) on the one hand and 

the displacement height on the other. The displacement height is described as an increased 

surface due to the vegetation on site, the covering of snow or buildings, as those elements in 

the landscape act like a resistance for the wind. For vegetation the displacement height 

varies from 0.4 to 0.8 from the average vegetation height. It depends on the density and 

type of vegetation. For snow the displacement height is the same as the height of the snow 

coverage [26]. Since the height and density of vegetation changes in the course of the year, 

the displacement height is a variable parameter, which changes during the year. The 

variability of this particular parameter is not being validated in this thesis. 
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3.2.2. WIND VELOCITY AND ELECTRICITY PRODUCTION 

Like mentioned above,   and   are the wind vectors. The wind vector   describes the wind 

in eastward direction, the wind vector   the wind in northward direction in    . The second 

part of the parameter name is the height – 2m above displacement height, 10m above 

displacement height and 50m above surface. Hence the parameter “U2M” for example 

explains itself as “eastward wind 2m above displacement height”.  

The wind velocity results in applying equation (1) to the wind vectors: 

          (1) 

After applying equation 1, the wind direction is not traceable anymore, but this is not 

necessary for the simulation because only the wind velocity is needed. It is assumed that 

each wind power plant can actively control it´s direction and therefore be able to face the 

wind directly. 

The following equation describes how the power of the wind can be calculated: 

      
 

 
        (2) 

With: 

PWind ........ Power of the wind 

ρ ........... Air density 

A ........... Wind flown through area 

ν ........... Wind velocity 

Most notablely in equation (2) is that the wind power increases with the third power of the 

wind velocity. A wind power plant can transform a part of the kinetic energy of the wind into 

electricity. The power coefficient Cp, which depends on the installed turbine, describes how 

much of the energy contained in the wind can be transformed by the wind power plant into 

electricity. The theoretically highest usable power coefficient is described by the Betz´ Law 

and is 59.3% of the total energy contained in the wind. A modern wind power plant can, 

under perfect conditions and between a certain wind speed interval, harvest about 50% of 

the total energy contained in the wind, which is quite close to the theoretical maximum [2]. 

Since the power coefficient is not needed for this simulation model, it´s not discussed any 

further. 
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Shadowing effects – the fact that in a wind farm single wind power plants can affect each 

other by slowing down the air after passing the turbines blades and hence deliver less power 

– are not being taken into account for the simulation. 

The generated power as a function of wind speed can be plotted as a power curve. The data 

about turbines can mostly be found on the operators’ websites or elsewhere on the internet. 

Figure 3 shows the power curves for all turbines that are used in the examined wind farms. 

 

Figure 7: Power curves for 4 different turbines used in the examined wind farms,  
sources: [27]–[30], own figure. 

It can be observed that the turbines have a similar curve, differing mainly in the maximum 

power output. The Vestas/Micon NM72-1650 and the Enercon E70-E4 have a weaker 

performance between around 6m/s and 14m/s. Especially the Enercon performs worse 

compared to the Vestas V80-2.0MW turbine, although they have a similar maximum power 

output. Usually the turbines start to produce power at around 4m/s, this is called the cut-in 

wind speed. The produced power then increases from around 5m/s to 12m/s, at which 

speed they nearly reach maximum capacity. If the wind speed reaches more than 25m/s, the 

turbines shuts down (cut-out wind speed). For example, the Enercon E-70-E4 turbine has a 

cut-in wind speed which is indicated at 2.5m/s and cut out wind speed at 28-34m/s [31]. But 

since there are no wind speeds above 25m/s in the MERRA-datasets, the curves are only 

displayed up to 25m/s wind speed. The data for the power curves were derived from: 

Enercon E70-E4 [27], Vestas V80-2.0MW [28], Vestas V90-3MW [30] and Vestas/Micon 

NM72-1650 in [29]. 
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3.2.3.  PREPARATION OF MERRA-DATA 

First, MERRA files had to be downloaded, as explained in section 3.2.1. The filename of a 

MERRA-file is explained here exemplary: 

 

                                                    (2) 

 

With: 

MERRA300 .... Part of the original third and actual data-stream 

prod.assim .. Product of assimilation stream 

tavg1 ....... time averaged – data consists of 1-hourly averaged 

values 

2d_slv ...... data is 2-dimensional and single-level 

20050101 .... date 01.01.2005 

.nc ......... data file output format NetCdf – Network Common Data 

Format 

More detailed explanations to these and other abbreviations can be found in [6].  

An important observation has to be made with respect to some of the downloaded files: 

some of the MERRA-data was reprocessed for a limited time period, as a compiler was 

improved and, at the same time, program code was updated. Hence, the data from 

01.06.2010 to 31.07.2010 was reprocessed and marked with “MERRA301” instead of 

“MERRA300”. This is described in detail in [32]. 

The data used here contains the mentioned time span, so it was necessary to rename the 

files from “MERRA301” to “MERRA300”. Renaming was done with the application “Rename-

Master”. This was necessary because otherwise the data wouldn´t be in the correct 

chronological order when used in RStudio. 

 

3.2.3.1. READING FUNCTIONS IN RSTUDIO 

To be able to use the data in RStudio, an additional package is needed. During this thesis, the 

package “ncdf4” was used. With the developed reading functions for NetCdf-files, the 
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MERRA-files can be opened and then the used parameters are extracted. With the following 

reading function the parameter “u50m”, eastward wind in 50m above surface, is extracted: 

readu50m <- function(ncname) { 

  du50m <- "u50m" 

  ncfile <- nc_open(ncname) 

 

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 

 

  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

 

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

 

  #read the variable 

  u50m.array <- ncvar_get(ncfile, du50m) 

 

  #Dataframe 

  u50m.vec.long <- as.vector(u50m.array) 

  u50m.mat <- matrix(u50m.vec.long, nrow = nlon * nlat, ncol = ntime) 

  lonlat <- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

 

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfu50m <- (data.frame(cbind(dista,lonlat/rad, u50m.mat))) 

  dfu50m <- dfu50m[ order(dfu50m[,1]), ] 

  names(dfu50m) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 

  return(dfu50m) 

} 

R Program-Code 1: Reading function for “U50m” parameter, source: own Code 

The developed function is called “readu50m” and is saved as such. The curly brackets mark 

the beginning of the function per se – what it contains and what it should do later with one 

or more files.  
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The first expression defines the name of the desired parameter. With the next command a 

NetCdf file can be opened. This function is from the package “ncdf4” and is only available 

after installing and loading the package. Afterwards the degrees of longitude and latitude as 

well as the time, respectively hours, are captured. For each of these values, a dimension is 

assigned. For the longitude this would be “nlon <- dim(longitude)”. 

Afterwards a matrix is generated. This puts all the values of the wind vector “u50m” into the 

matrix. This matrix is then transformed into a vector and merged to a matrix with the 

wanted order: 

u50m.mat <- matrix(u50m.vec.long, nrow = nlon * nlat, ncol = ntime) 

 

The result is a matrix, which shows hours in the columns, from 0 to 23, and the number of 

grid points in the rows. But because the values of the required parameter, in this case 

“u50m”, have to be assigned to a coordinate, the next step is to generate a data frame with 

all the possible coordinates – pairs of the longitudinal and latitudinal degrees. Therefore the 

possible combinations of longitudinal and latitudinal degrees are expanded with “lonlat <- 

expand.grid(longitude,latitude)”. In the case of the Austrian MERRA-dataset, this 

results in 120 points. 

The next expression calculates the distance of all those coordinates to a desired initial point 

– in particular the wind farms. This is discussed in chapter 2.1.5.2. 

With 

dfu50m <- (data.frame(cbind(dista,lonlat, u50m.mat))) 

 

a new data frame is generated. It is ordered in ascending distance to the initial point and 

after renaming the names of rows and columns, the final data frame is available. Figure 5 

shows an extract of such a data frame. In this extract, the values of the first 3 hours of the 

parameter “u50m” for the closest points to the wind farm, as well as the distance and the 

coordinates are shown. 

The last part of the developed function closes the file and returns the desired data-frame. 

For the remaining 6 parameters, there have also been developed similar reading functions. 

They can be used for New Zealand and Austria likewise. 

A reading function for dates and times was developed which consists of the following 

program code: 
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datum <- function(ncname) { 

  ncfile <- nc_open(ncname) 

  h <- ncvar_get(ncfile, "time") 

  d <- unlist(strsplit(ncfile$dim$time$units, " ")) 

  date <- rep(d[3],24) 

  dh <- paste(date,h) 

  x <- as.POSIXct(strptime(dh, format="%Y-%m-%d %H",tz="UTC")) 

  nc_close(ncfile) 

  return(x) 

} 

R Program-Code 2: Reading function for timestamps of MERRA-files, source: own code 

This function reads the hours and date of a file and returns a “POSIXct-vector” – which is a 

class in RStudio. After the file was opened, the hours (“h”) and date (“d”) are assigned to a 

variable. Since one day has 24 hours, the date is reproduced 24 times and afterwards these 2 

vectors are joined (“dh”). To convert to the required format, that is later used to merge the 

different data-frames and match the different time zones, the “as.POSIXct” function of 

RStudio is applied to the vector “dh”. Afterwards the file is closed and the function returns 

the dates and times in a useful format.   

3.2.3.2. DISTANCE FROM MERRA GRID POINTS TO THE WIND FARMS 

Like mentioned in chapter 2.1.3.1 the following term in the reading function 

 

dista <- 6378.388 * acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

 

calculates the distance from an initial point – the examined wind farms – to the points from 

the dataset. The 2 variables “lat” and “long” represent the coordinates of the wind farms. 

It is necessary to transform the degrees of longitude and latitude from both, the wind farm 

and the MERRA grid points, into radians. This is what the term “lonlat <- lonlat*rad” 

does in the reading function, whereby “rad” calculates from degrees to radians by means of 

“π    ”. For the coordinates of the wind farm this was done separately, since they are not 

captured in the reading function.  
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With equation (3), the central angle between 2 points on a sphere can be calculated. It is 

called the spherical law of cosines: 

 

                                             (3) 

 

With: 

   .......... central angle between 2 points 

   ........... geographical latitude of point 1 

   ........... geographical latitude of point 2 

   .......... difference between geographical longitude of point 2 

and 1 

To get the distance from the wind farms to the grids of the MERRA-dataset in kilometres, the 

central angle between 2 points is multiplied with the radius of the earth, since the angle is 

calculated in radians. The radius of the earth is assumed with 6378.388km.  

Because the term is used in the reading function, all distances from all points in the dataset 

to a given point – the wind farms – are calculated and then ordered in ascending distance 

with  

dfu50m <- dfu50m[ order(dfu50m[,1]), ] 

 

For the Austrian wind farm, the exact location cannot be published due to data protection 

requirements, as mentioned before. For New Zealand, the coordinates mentioned in chapter 

2.1.2 are used for calculating the distances. The following table shows the distances in 

kilometres and the geographical coordinates in degrees from the 3 closest points from the 

MERRA grid points to the wind farms as well as the values for the parameter “u50m” for the 

first 3 hours of a random day. 
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MERRA 
Point  

Distance in km from 
wind farm 

Longitude Latitude 

Wind velocities in m/s for 3 

hours 

1 2 3 

 
White Hill Wind Farm                         

1 34.68 168.00 -46.00 3.51 3.80 4.19 

2 35.18 168.00 -45.50 2.94 3.45 3.94 

3 41.19 168.67 -46.00 3.38 3.77 4.13 
  

Mahinerangi Wind Farm                        

1 27.65 170.00 -46.00 4.82 5.29 5.64 
2 29.93 170.00 -45.50 4.36 4.64 4.84 
3 51.70 169.33 -46.00 3.96 4.36 4.67 

   

Te Apiti Wind Farm                           

1 27.92 176.00 -40.50 6.52 7.74 9.51 
2 36.78 176.00 -40.00 9.07 10.07 11.08 
3 46.23 175.33 -40.50 8.29 8.95 9.59 

Table 1: Distance in kilometres from 3 closest MERRA grid points to the wind farms, including their 
coordinates and the wind velocities for the first 3 hours from a random day, source: own table 

From table 1 the 3 closest points to each wind farm can be derived.  The closest point is used 

in the further simulation of wind speeds or respectively electricity generation. It also shows, 

besides the distance in kilometres from the wind farm, that the wind speeds for different 

MERRA-points are quite different. For example, the second closest point in Te Apiti shows 

much higher wind speeds in all 3 hours than the closest point. This has, of course, a 

significant impact on the simulation and is discussed later in chapter 5. Table 1 also shows 

the spatial resolution of the MERRA-grid, since all longitudinal degrees have a 0.66° interval 

and the latitudinal degrees show a 0.5° degree interval. 

3.2.3.3. DATA FRAME WITH ALL MERRA FILES 

Table 2 shows only the extract of one day, respectively one MERRA file, for one parameter. 

The next step is to generate data frames with all files and all parameters. For each 

parameter an own data frame is generated. 

At first, all files are put together in one list. This list contains all file names of the MERRA 

dataset. For New Zealand this is done with the command: 
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NZfiles <- list.files(pattern = "*.nc") 

 

Afterwards the function “lapply” is used to apply the reading functions to all files at once. 

This generates a list with 3652 data frames. This means each list element contains 1 table for 

one location for the complete period. Exemplary for the White Hill wind farm and the 

parameter “u50m” this would be: 

Listu50mWH <- lapply(NZfiles, readu50m) 

 

Due to the fact that the distance calculation is contained in the reading functions, the point 

with the shortest distance is always placed in the first row of each data frame within the list. 

This means that the first row of each data frame is extracted and then merged together in a 

new data frame. This is, again, only an example for 1 parameter. Here it is shown, again 

exemplary, for the White Hill wind farm and the parameter “u50m”: 

NNWHu50m <- unlist(sapply(Listu50mWH, function(d) d[1,4:27])) 

 

The new data-frame now contains all values for 1 parameter for each hour and all days. 

Since the coordinates are no longer needed, they are dropped out of the data frame – only 

the columns 4 to 27, the values for the parameter, are used.  

The same procedure is now done with the remaining 6 parameters, whereby equation (1) is 

applied to the data frames with the wind vectors   and  . The result is the wind velocity and 

a reduction from 7 to 4 data frames. So there is 1 data frame for the displacement height 

and 3 for the wind velocities at different heights – 2m, 10m and 50m. 

For the timestamps the function “datum” is used. It is applied to all files and returns a list 

with all dates and times for all MERRA-files. After applying the function “unlist” to the date 

list, a vector with the times and dates is generated. The problem, that this vector does not 

contain the “POSIXct” class values but instead numerical values, is solved by applying the 

following command: 

MTZ <- as.POSIXct(NNdate, origin = "1970-01-01 00:00:00 UTC", 

tz="Etc/Universal")  

 

This command is necessary to transform the numerical values back to the “POSIXct” class. 

The used time zone is the same like the MERRA-files time zone – UTC (Universal Time Code). 

All data-frames, the 4 for the parameters as well as the one for the timestamps, are then put 

together into 1 data-frame. It contains all hourly values for all parameters for the closest 

MERRA-point and the corresponding timestamps. 
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3.2.4. TIME ZONES 

As mentioned before, the MERRA data is in UTC – Universal Time Code (same as GMT – 

Greenwich Mean Time). It has no time shifts during a year. The time for the MERRA data is 

always in half past hours, like mentioned in chapter 2.2.1., due to the fact that it is an 

averaged value for 1 hour. This fits quite well with the production data, because it always 

contains the production of a full hour, e.g. from 01:00 to 02:00, hence the average value 

within 1 hour should reflect the production to some extent2. 

The fact that the production data includes time shifts due to daylight saving times, which 

vary from year to year, has to be addressed. 

The production data for Austria is in UTC+1 and there is a daylight saving time from around 

end of March to end of October, which means UTC+2 (i.e. CET – Central European Time, and 

respectively CEST – Central European Summer Time).  

In New Zealand NZST – New Zealand Standard Time, which is UTC+12, and respectively NZDT 

– New Zealand Daylight Saving Time which is UTC+13 are used. NZDT applies from around 

end of September to beginning of April (southern hemisphere). 

Hence the date and time for the real production data was read from the production files and 

then put into a data-frame – 1 column for the timestamps, 1 column for the production. The 

timestamps in this data-frame are also of the class “POSIXct” which contains also the time 

zone. Therefore it is possible to merge the two data-frames by their timestamps. This means, 

that RStudio recognizes the different time zones and calculates the time shifts by itself. The 

command 

WHDF <- merge(WH, MWH, by.x = "NZdate", by.y = "MD") 

 

generates a data-frame that is merged by its timestamps (exemplary for the White Hill wind 

farm). Therefore the production data and the MERRA-data are matched now on temporal 

scale and this final data-frame that can provide the information needed for the simulation. It 

contains the production and the timestamps for the local times of the wind farms plus the 

matched wind speeds and the displacement height from the MERRA-files. 

                                                      
2
 It has to be mentioned that averaged values cannot reflect the production exactly due to the non-linear 

characteristic of the power curve. A change in wind speed during an hour is taken into account in the real 
production data but not for simulated production. 
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As mentioned in the chapters 2.1.1, 2.1.2.1, 2.1.2.2 and 2.1.2.3, some data had to be 

removed, because the production data was somehow erroneous. This can easily be done by 

deselecting the rows of the data-frame that are not examined, e.g.: 

WHDF <- WHDF[c(3001:30999,32751:51122),] 

 

This code shows exemplary for the White Hill wind farm how to handle the removal of data. 

The first 3000 hours as well as the production hours 31000 to 32750 are dropped. Altogether 

there are 4 data-frames, one for each examined wind farm. 

3.2.5. EXTRAPOLATING WIND VELOCITY – POWER LAW 

Basically there were 2 possibilities to extrapolate the wind velocities from a given height 

(2m, 10m, 50m) to the hub heights of the turbines – the empirically derived power law and 

the logarithmic law. For the logarithmic law there would have been 2 elements of 

uncertainty because the roughness coefficient as well as the friction coefficient would have 

been needed to calculate the wind speeds for the wanted heights. Since the MERRA data 

contains wind speeds for 3 different heights it is quite simple to calculate the wind shear 

coefficient α.  

As stated in [33], the value of the wind shear coefficient can be at least tripled during one day 

on the same location because it depends on many variables like atmospheric stability, wind 

speed, temperature, height, land features, and other factors. It has no physical foundation 

and is an engineering formula that more or less is an expression of the (in-) stability of the 

atmosphere. Notable is also that the power law is only used to describe wind profiles in the 

lower atmosphere up to around 100m. Equation (3) shows how the wind shear coefficient 

alpha can be calculated: 

 

  
              

              
  (3) 
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With: 

   ........... wind speed at 50m above surface 

   ........... wind speed at 10m above displacement height 

   ........... 50m above surface 

   ........... 10m above displacement height 

α  . . . . . . . . . . . . . . . . . . . . . . .  wind shear coefficient 

 

After applying equation (3) to the final data frames mentioned in the previous chapter, 

respectively to 2 different wind speeds, the result is the wind shear coefficient for every 

single hour. In other words, each wind speed value can be linked with a shear coefficient 

value. Since the wind speeds in the MERRA-data set used for calculating the shear coefficient 

is 50m above surface and 10m above displacement height, the displacement height has to 

be added to the height h1. 

After rearranging equation (3) to equation (4) it is obvious that with the given data, the wind 

speed for the wanted height can be calculated. Equation (4) shows the power law: 

       
  

  
 
 

 (4) 

With: 

   ........... Extrapolated wind speed at hub height 

   ........... Wind speed at 50m above surface 

   ........... Hub height of the turbine 

   ........... 50m above surface 

α  . . . . . . . . . . . . . . . . . . . . . . .  wind shear coefficient 

By applying equation (4) the wind speeds can be extrapolated to the actual hub height of the 

specific wind farms. 
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3.2.6. SIMULATION 

Combining the extrapolated wind speeds plus the power curves of the installed turbines, 

which are shown in chapter 2.2.2., the production can be simulated for each wind farm in 

hourly resolution. Table 2 shows the power (kW) of the turbines in dependency of the wind 

speed (m/s). The values in Table 2 are only shown up to 22m/s due to the fact that the 

maximum wind speed that occurs in the MERRA-dataset, respectively in the extrapolated 

wind speeds, is 21.24m/s (Te Apiti).   

In order to use the values as a function in RStudio, 2 vectors (“wind” and “power”) are 

generated for each turbine. The first vector includes the wind speeds, the second the power 

output. Afterwards the following command is applied to those vectors: 

f <- approxfun(wind, power) 

 

The command “approxfun” returns a function that linearly interpolates the values of the 

vectors. For each turbine a separate function is generated and these functions can 

afterwards be plotted. The results of plotting the power curves are displayed in Figure 4.  

Wind speed (m/s) 
Austria  

Enercon E70-E4 
White Hill 

Vestas V80-2MW 
Mahinerangi 

Vestas V90-3MW 

Te Apiti 
Vestas/Micon 
NM72-1650 

0 0 0 0 0 

4 56 66.3 75 0 

5 127 152 187 79 

6 240 280 348 204 

7 400 457 574 370 

8 626 690 875 576 

9 892 978 1257 808 

10 1223 1296 1688 1067 

11 1590 1598 2118 1308 

12 1830 1818 2514 1507 

13 1950 1935 2817 1610 

14 2050 1980 2958 1645 

15 2050 1995 2994 1650 

16 2050 1999 2999 1650 

17 2050 2000 3000 1650 

18 2050 2000 3000 1650 

19 2050 2000 3000 1650 

20 2050 2000 3000 1650 

21 2050 2000 3000 1650 

22 2050 2000 3000 1650 

Table 2: Power of the turbines in dependency of the wind speed in kW, sources: [27]–[29], [30, S. 
90], own figure 

If the functions are applied to the extrapolated wind speeds, the power output for each hour 

is calculated: 
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pl1 <- sapply(v8650, FUN = "f") 

 

The command “sapply” applies the approximated power curve to the extrapolated wind 

speeds (here exemplary shown for the wind farm in Austria) and returns the power output 

for 1 turbine in hourly resolution. In order to get the production of the whole wind farm, the 

results for each hour are multiplied with the number of the installed turbines.  

3.3. STATISTICAL ANALYSIS OF SIMULATED DATA 

In order to validate the MERRA-data, the simulated power output and the real power output 

are compared and analysed for different time spans. Several statistical parameters are 

examined to figure out how well the model performs. 

The simulated and the real output, in hourly resolution, plus the dates are merged in a new 

data frame called “mm”, exemplary for Austria. Since the dates are in class “POSIXct”, 

different time collections can be extracted by using the “format” function of RStudio as 

follows: 

 

ZY<-format(mm[,1],"%Y") 

ZYm<-format(mm[,1],"%Y%m") 

ZYmd<-format(mm[,1],"%Y%m%d") 

 

zag_y<-aggregate(mm[,2:3],by=list(ZY),sum) 

zag_mon<-aggregate(mm[,2:3],by=list(ZYm),sum) 

zag_day<-aggregate(mm[,2:3],by=list(ZYmd),sum) 

R-Program Code 3: Assigning hourly production to different time units, source: own Code 

 

Hours, days, months and years can be identified and collected in character strings. It is 

important to mention, that the “format” function works like a “filter” that picks out parts of 

the date-string which can afterwards be used to assign the hourly values to the created 

date-strings. For example the first term creates a string that consists only of the different 

years. This means each hourly value is assigned to the year in which it occurs. The second 

term generates a string that combines years and months and hence each value is assigned to 

the year plus the month in which it occurs. The third does the same for years, months and 

days.  

Afterwards these date-strings can be used to aggregate the power output with the function 

“aggregate”. To sum up the production for each single year, the first term is used. It creates 
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a data frame with the hourly aggregated power output for each year. The second term 

aggregates the hourly production for each month and the third term aggregates the 

production for all single days. R-Program Code 2 shows exemplarily the processing for the 

wind farm is Austria. In this case there are in total 44.481 hours which cover 6 years, 62 

months or 1854 days.  

The results are prepared in 2 different parts. The first part presents and analyses the 

individual wind farms, the second one compares the wind farms with regard to the 

differences and possible common biases and errors. 

For the Austrian wind farm only the statistical values for a single turbine can be shown due 

to data protection requirements.  

The correlation is given for several temporal resolutions – hourly, daily, monthly, seasonally 

and annually – and all wind farms. The correlation coefficient between real and simulated 

production is in most cases the Pearson correlation coefficient, since in most of the cases the 

sample size is high enough and the assumption that the relation between the variables is 

linear can be made. Also the distribution is not that highly skewed and therefore, the 

Pearson correlation coefficient should be the first choice. Like [34] mentions “for moderately 

skewed distribution ... Pearson´s correlation coefficient remains the most powerful”. Since 

the data used here is not being considered as normally distributed, the Pearson correlation 

coefficient is usually not the first choice in general. But [34] also shows that the Pearson 

correlation coefficient can be “successfully used for analysis of continuous non-normally 

distributed data”. Therefore the only reason for using Spearman´s correlation coefficient 

instead of Pearson was the sample size. If the sample size is smaller than 25 the Spearman 

correlation is given additionally, since in [35] it is recommended that Pearson should only be 

used if the sample size is 25 or higher.  

The 95%-confidence interval´s for the correlation are calculated with the help of the R-

package “psychometric” and the command “CIr”. By means of the correlation coefficient, the 

sample sizes, which were used for calculating the correlation coefficients, and an alpha level 

of 0.05 the confidence intervals can be calculated (e.g. the hourly confidence interval for the 

White Hill wind farm was calculated by means of a correlation coefficient of 0.7, a sample 

size of 61696 production hours and an alpha level of 0.05). The confidence intervals are 

interpreted as followed. For many thousands of samples with the sample size of the 

calculated correlation coefficients, the correlation coefficient of those samples will be within 

the confidence intervals for a proportion of 1-α (for a 95% confidence interval α=0.05) [36].  

Besides the correlations and their confidence intervals, a common summary is given which 

includes the standard deviation, minimum, 1st quartile, median, mean, 3rd quartile and 

maximum for both, simulated and real production as well as the difference of real and 

simulated production and for a single turbine. 
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For each wind farm a histogram is shown that reflects the production frequencies for 

different power output intervals for real and simulated production. Also, the aggregated 

monthly simulated and real production is shown in a plot for each wind farm. 2 extra plots 

are presented for the Austrian wind farm that show (1) the real and simulated production 

for 70 randomly selected hours and (2) a 2d-contourplot that demonstrates the relationship 

between simulated and real production. 

The second part of the results compares the 4 wind farms regarding their statistical 

parameters. Therefore the values of real and simulated production are normalized by the 

capacity of the particular wind farm and then the difference between real and simulated 

production as well as the real and simulated production is presented in one table. This table 

includes, besides the above mentioned summary of statistical parameters the correlation 

values and their 95% confidence intervals for all examined temporal resolutions and wind 

farms. The last figure of this part shows 8 box plots, 2 for each wind farm whereby 1 reflects 

the real and the other the simulated production. 
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4. RESULTS 

4.1. AUSTRIAN WIND FARM 

Table 3 shows an overview of the examined statistical parameters for 1 single turbine for the 

Austrian wind farm. Due to data protection requirements, the full parameters cannot be 

provided for this wind farm. It shows rounded integers, except the correlation and the 

coefficient of determination values, for a single turbine. The values of the single turbine are 

the simulated production divided by the number of installed turbines. Because of the data 

constraints, the focus for this wind farms is on the correlation coefficients. The mean of the 

simulated production is about 86.98% of the real production. The data covers a time span of 

44.481 hours (1.854 days, 62 months, 21 quarters, 6 years). The abbreviations for the 

temporal resolutions are: h. = hours, d. = days, m. = months, q. = quarters, y. = years. 

 

Austria – 44.481 production hours, 2.050kW/turbine 

Parameter 
Real Prod. 

(kWh) 
Simulated 

Prod. (kWh) 
Δ Real-Simulated 

(kWh) 
Simulated Prod. for 1 

turbine (kWh) 

Minimum    0 

1st Quartile    49 

Median    178 

Mean    361 

3rd Quartile    487 

Maximum    2050 

Standard 
Deviation 

   455 

R – Pearson 
Correlation 
Coefficient 

Hourly 
(44481 h.) 

0.75 

Daily  
(1854 d.) 

0.85 

Monthly 
(62 m.) 

0.94 

Seasonally 
(21 q.) 

0.96 

Annually 
(6 y.) 

0.99 

R² (coefficient of 
determination) 

Hourly 

0.56 

Daily 

0.72 

Monthly 

0.89 

Seasonally 

0.93 

Annually 

0.99 

Table 3: Statistical Parameters for the wind farm in Austria, source: own table 

 

Data Protection 
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The (Pearson) correlation increases with a decreasing temporal resolution, from about 75% 

for hourly production up to 99% for the annual production. A coefficient of determination 

(R²) of about 0.56 reveals that more than half of the real production is explained by the 

simulated production on hourly basis. On a monthly basis, which includes 62 months, R² is 

0.89. 

Figure 8 represents a histogram for simulated and real production on hourly based values for 

a single turbine. Each bar contains the values for a range of 100kWh. Red colour marks a 

surplus in real production and light-blue represents a surplus of the simulated production. 

From 0 to 100kWh the real production contains more values, which could be a consequence 

of a production stop caused by the operator3 and not mainly due to lack of wind. For the 

bins between 100kWh and 1.200kWh the simulated production has a slightly higher 

frequency than the real production. The frequency decreases with the increase of the 

power. From 1.300kWh upwards the real production has a continuous higher frequency than 

the simulated production. This explains quite well the reason for the higher total output of 

the real compared to the simulated production which was mentioned above. Worth to 

mention is that the maxima (single highest output) of both are quite the same (see Table 3), 

but this is by far not the case for the frequency of them, since the real production has a 

more than twice as high frequency for a production of 2.000+ kWh compared to the 

simulated production. 

 

Figure 8: Histogram of hourly production data for Austria, source: own figure 

                                                      
3
 Possible reasons could be maintenance processes or a necessary shut down of the production due to several 

reasons, e.g. overload of the grid. 
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In figure 9 the production for 70 sequential hours, (from hour 25.000 to hour 25.070), is 

shown. It can clearly be seen that the simulated production has a much smoother behaviour 

and has a lower production than the real production for that period. Hardly any peaks can be 

seen in the simulated production in opposite to the real production. And for higher wind 

speeds, respectively power output, the real values are continuously higher than the 

simulated ones. For lower wind speeds a different picture can be observed – the simulated 

production is most of the times slightly higher compared to the real one. The huge 

difference in the middle (hour 28 – 35) plus the higher simulated production for lower power 

output confirms the information given by the histogram in figure 8. 

 

Figure 9: 70 hours (sequential, from hour 25.000 to hour 25.70) for real and simulated production 
Source: own figure 

 

A look on the monthly production shows a quite similar picture, which can be seen in figure 

10. The production data was aggregated to single months and then plotted in the same 

figure. The simulated production is nearly continuously lower than the real production. Still, 

a quite good correlation of around 0.94 is achieved. 
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Figure 10: Monthly Production in Austria, source: own figure 

 

 

Figure 11: 2-d contour plot for hourly production in Austria, source: own figure 

The 2d-contourplot in figure 11 shows the relationship between simulated and real 

production and their common occurrences which are represented in different colours – from 
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dark blue to dark red – for different common occurrences. The colour scale reaches from 

dark blue to dark red, with different shares of red and blue. The higher the share of red, and 

therefore the lower the share of blue gets, the higher the common occurrences. The 3 

dimensional relationship between simulation, real production and their common 

occurrences can be shown in 2 dimensions. The 2 hotspots of the plot can be seen for a 

production from 0kWh to 5.000kWh and for maximum output around 25.000kWh. The plot 

shows a quite significant bias. For a very low production the simulation is slightly 

overestimating the real production, but from 5.000kWh upwards, the simulation 

underestimates the real production substantially. Hardly any common occurrences can be 

observed for a real production lower than 15.000kWh and a simulated of 15.000kWh or 

higher, whereas a whole lot of common occurrences which have a real production of 

15.000kWh upwards and a simulated production of less than 15.000kWh. This is also 

reflected in a much lower total production of the simulation. 

4.2. WHITE HILL WIND FARM 

The statistical parameters for White Hill are represented in table 4. The values for the whole 

wind farm (simulated and real) as well as for a single turbine are rounded integers that 

represent the production in kWh, except the correlation and coefficient of determination 

values. The production for 1 turbine is the simulated production divided by the number of 

turbines, which is in this case 29. A quite huge difference can be seen in the first quartile, 

which is 5.402kWh for the simulated and 1.360kWh for the real production, which is a 

difference of 4.042kWh. For higher production (represented by median, mean, the 3rd 

quartile or the maximum) the values become more aligned. For the 3rd quartile, the real 

production is even higher than the simulated production. The total sum of production is 

952.524.685kWh for the real and 1.088.562.939kWh for the simulated production. In 

opposite to the Austrian wind farm, the simulated production is about 14.28% higher than 

the real one. The data covers a time span of 46.371 hours (1.934 days, 65 months, 22 

quarters, 7 years). 

The (Pearson) correlation increases with the increase of the temporal resolution, with the 

exception of seasonal against monthly correlation (however without statistical significance 

for the last). The seasonal correlation aggregates the production for 3 sequential months – 

January to March, April to June, July to September and October to December. The 

correlation is, in general, not that high as for the Austrian wind farm: about 70.4% for hourly 

resolution and 88.6% for monthly resolution. This means that only 49.6% of the real 

production can be described by the simulated production for hourly data, which is 

represented by R². 
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White Hill – 61.696 production hours, 58.000kW capacity 

Parameter 
Real Prod. 

(kWh) 
Simulated 

Prod. (kWh) 
Δ Real-

Simulated 
Simulated Prod. for 1 turbine 

Minimum 0 0 0 0 

1st Quartile 1360 5402 -4042 186 

Median 12895 18390 -5495 634 

Mean 20541 23475 -2934 809 

3rd Quartile 41470 41200 270 1421 

Maximum 57500 58000 -500 2000 

Standard Deviation 19916 19702 214 679 

R – Pearson 
Correlation 
Coefficient 

Hourly 
(46371 h.) 

0.70 

Daily 
(1934 d.) 

0.80 

Monthly 
(65 m.) 

0.87 

Seasonally 
(22 q.) 
0.86 

Annually 
(7 y.) 
0.98 

R² (coefficient of 
determination) 

Hourly 

0.50 

Daily 

0.65 

Monthly 

0.79 

Seasonally 

0.74 

Annually 

0.96 

Table 4: Statistical parameters for White Hill wind farm, source: own table 

 

Figure 13 shows the histogram for hourly production data. Light blue represents a higher 

production frequency for the real and red a higher production frequency for the simulated 

production. The breaks for each bar are set with 3.000kWh. For the first bar (0 – 3.000kWh) 

the real production frequency is slightly higher, which is assumed to be the same reason that 

were mentioned for the Austrian wind farm. The frequency for a power output up to 

40.000kWh is continuously higher for the simulated compared to the real data, whereby the 

differences decrease with the increase of the power output. From 40.000kWh up to about 

55.000kWh the frequency is higher for the real production, which is quite the same like for 

the Austrian wind farm. The extraordinary higher frequency for a power output above 

55.000kWh for the simulated production could be a consequence of production restriction. 

In figure 4 – electricity production for White Hill wind farm – 1 single peak is visible for 

production hour 18.975. This peak value of 57.500kWh is only reached once in the whole 

dataset. The second highest value is 56.200kWh, the third highest 56.150kWh. This might 

support the assumption that the operator is restricting production in the wind farm due to 

e.g. limited interconnection capacities. 



 

39 
 

 

Figure 12: Histogram for hourly production data for White Hill, source: own figure 

 

 

Figure 13: Monthly production for White Hill, source: own figure 

The monthly production is shown in figure 14. The production data was aggregated to single 

months and plotted against each other. A bit of a reversed situation compared to the 
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Austrian wind farm can be observed here. The real production is nearly continuously lower 

than the simulated one, except for a few single months in which the production was lower in 

total. This could also reflect production restrictions imposed by the operator. 

4.3. MAHINERANGI WIND FARM 

Table 5 shows the statistical parameters for the Mahinerangi wind farm in rounded integers 

for the real and the simulated production as well as for 1 turbine, except the correlation and 

the coefficient of determination, which values are rounded to 2 positions behind the decimal 

point. The parameters are calculated for the hourly production data. The simulated 

production for 1 turbine is the whole simulated production divided by 12 (installed turbines 

in total). A quite similar result can be seen here, compared to the White Hill wind farm. The 

first quartile is nearly 3 times higher from the simulated compared to the real production. 

The harmonisation increases with higher production. Since the mean value is higher for the 

simulated production, it is clear that the total sum of production is higher too. The real 

production had an output of 203.011.205kWh and the simulated output would have been 

211.185.422kWh. The overproduction of about 4% seems to be a quite good result. The data 

covers a time span of 17.473 hours (730 days, 25 months, 9 quarter, 3 years). 

A look at the (Pearson) correlation coefficients shows that, while mean production is similar, 

the time profile of production is not captured well. For hourly production the coefficient is 

only 0.68, which means that only about 46% of the real production can be explained by the 

simulated production. Even though the correlation increases with the temporal resolution, 

from about 81% for daily, 92% for monthly, 98% for seasonal up to 99.9% for annual, the 

result could be biased because of the short observation time of only 3 years of production. 

Therefore the seasonal and the annual correlation are not significant.  
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Mahinernagi – 17.473 production hours, 36.000kW capacity 

Parameter Real Prod. 
Simulated 

Prod. 
Δ Real-Simulated 

Simulated Prod. for 1 
turbine 

Minimum 0 0 0 0 

1st Quartile 710 2099 -1389 59 

Median 6850 7926 -1076 571 

Mean 11619 12086 -467 968 

3rd Quartile 21375 20317 1058 1781 

Maximum 36000 36000 0 3000 

Standard 
Deviation 

11961 11626 335 997 

R – Pearson 
Correlation 
Coefficient 

Hourly 
(17473 h.) 

0.68 

Daily 
(730 d.) 

0.81 

Monthly 
(25 m.) 

0.92 

Seasonally 
(9 q.) 
0.98 

Annually 
(3 y.) 
0.99 

R² (coefficient of 
determination) 

Hourly 

0.46 

Daily 

0.65 

Monthly 

0.85 

Seasonally 

0.95 

Annually 

0.99 

Table 5: Statistical parameters for Mahinerangi wind farm, source: own table 

 

The histogram for the hourly production is shown in figure 15. A higher frequency for the 

real production is highlighted by a light blue colour and a higher frequency for the simulated 

production by red colour. The breaks for each bar are set at 2.000kWh intervals. Quite 

similar to the 2 wind farms presented above, the real production has a higher frequency for 

the first bar (0 - 2.000kWh), which is probably a consequence of the reasons mentioned in 

3.1. The overestimation of the simulated production for lower wind speeds is quite the same 

as compared to the other 2 wind farms, as well as the underestimation for higher wind 

speeds, except the last bar. The reason for the much higher frequency of the simulated 

production for the last bar is most likely not a consequence of production restrictions, since 

the number of occurrences for full, or close to full production is not unusually low. 
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Figure 14: Histogram for hourly production data for Mahinerangi, source: own figure 
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The aggregated monthly production in figure 16 shows, in general, a quite good correlation, 

even though over- as well as underestimation of the simulated production can be observed. 

Due to the short time period of available production data, the relationship between monthly 

and annual or seasonal production, respectively correlation is not significant. 

 

Figure 15: Monthly production Mahinerangi, source: own figure 

4.4. TE APITI WIND FARM 

Table 6 shows the statistical parameters for the Te Apiti wind farm. These results may be 

most significant with regard to the time span of production, since it covers more than 7 

years. The values are rounded integers, with the exception of the correlation coefficient and 

the coefficient of determination. The values for a single turbine are the result of the 

simulated production divided by 55, which equals the number of turbines that are installed 

in the wind farm. The first quartile is slightly higher for the simulated production but it 

shows a quite low difference. The mean value predicts a higher total production of the real 

production (2.163.399.270kWh) compared to the simulated one (2.091.440.542kWh), which 

equals an underestimation of the simulated production of about 3.3%. The 3rd quartile is, like 

expected, slightly higher for the real than the simulated production. The data covers a time 

span of 61696 hours (2573 days, 86 months, 29 quarters, 9 years). 
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Te Apiti – 61.696 production hours, 90.750kW capacity 

Parameter Real Prod. 
Simulated 

Prod. 
Δ Real-Simulated 

Simulated Prod. for 1 
turbine 

Minimum 0 0 0 0 

1st Quartile 5240 5541 -301 95 

Median 30400 24425 5975 553 

Mean 35065 33899 1166 638 

3rd Quartile 63266 59709 3557 1150 

Maximum 90470 90750 -280 1645 

Standard Deviation 29460 31420 -1960 536 

R – Pearson 
Correlation 
Coefficient 

Hourly 
(61696 h.) 

0.67 

Daily 
(2573 d.) 

0.74 

Monthly 
(86 m.) 

0.81 

Seasonally 
(29 q.) 
0.74 

Annually 
(9 y.) 
0.99 

R² (coefficient of 
determination) 

Hourly 
 

0.45 

Daily 
 

0.55 

Monthly 
 

0.66 

Seasonally 
 

0.55 

Annually 
 

0.98 

Table 6: Statistical parameters for Te Apiti wind farm, source: own table 

 

The correlation shows a quite poor performance for all temporal resolutions, except for the 

annual observation, which however is insignificant due to the relative low amount of 

observations. A quite interesting result is the very low correlation of the seasonal production 

(73.84%), which is similar to the daily production (73.83%). For hourly resolution, the 

correlation coefficient is about 0.67, which means that only about 44.6% of the real 

production can be explained by the simulation. Even though the coefficients increase with 

the temporal resolution, except of the seasonal correlation, a correlation coefficient of 

about 0.82 for monthly production is low with regard to the long observation time span of 

this wind farm.  

Figure 17 shows the histogram for the hourly production data for Te Apiti. Blue colour is, as 

before, a higher frequency of the real production and red highlights a higher frequency for 

simulated production. The breaks for the single bars are set in this case at 5.000kWh. The 

higher frequency for the real production in the first bar is the same compared to all other 

wind farms, assuming the same reasons. Also the overestimation of lower production and an 

underestimation for higher production up to a certain point can be observed in all other 

wind farms, even though the real production frequency reaches earlier the point in which it 

overtakes the simulated production, relative to the total possible output of the wind farm. 

The extraordinary high frequency of the simulated production for a very high power output, 
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represented by the last 2 bars, is a phenomenon that can also be observed especially for the 

White Hill wind farm, even though this is the most outstanding occurrence of this 

phenomenon.  

 

Figure 16: Histogram for hourly production data for Te Apiti, source: own figure 

The reason for this high frequency is assumed to be the same like mentioned in 4.2. – it is 

assumed that the system operator restricts production. The highest real output for Te Apiti 

was 90.470kWh in production hour 28.628. The second highest output was 90.290kWh and 

the third highest 89.390kWh. This means, the wind farm is able to produce up to a peak 

from 90.470kWh. It is very unlikely that the wind conditions were that bad, that the wind 

farm could reach the full output only once in about 9 years. This constitutes the assumption 

that production restrictions were imposed. 

The aggregated monthly production of Te Apiti is shown in figure 18. For some months with 

extraordinary high or low production (e.g. months 15 and 16, 20 to 22 or 81 and 82), the 

simulation represents the real production very nicely, but for others (e.g. month 54 to 56, 24 

to 27) the difference between real and simulated production is quite high. In general there 

cannot be seen a continuous reliable compliance between real and simulated production, 

which is also reflected by the quite low correlation of about 82%. 
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Figure 17: Monthly production for Te Apiti, source: own figure 
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4.5. WIND FARMS COMPARED 

In order to compare the results of all 4 wind farms and to identify possible sources of error 

or biases, table 7 shows selected results of the comparison of real and simulated data. For 

the parameters 1st quartile, median, mean, 3rd quartile and maximum, the hourly production 

data, for real as well as for simulated data, were normalized by the capacity of the specific 

wind farm in order to make it easier to compare the results. Besides the real and the 

simulated hourly production, the difference between real and simulated hourly production is 

given for the above mentioned parameters. Due to data restriction requirements for the 

Austrian wind farm, the capacity cannot be stated, instead the capacity of 1 turbine plus the 

production hours are given. For the New Zealand wind farms, the capacity and the 

production hours are stated. For 2 wind farms – Mahinerangi and Te Apiti – the total amount 

of simulated production is quite close to the real production, whereas for the Austrian wind 

farm it only equals 86.98% of the real production and for White Hill it is 114.28% of the real 

production.  

The Pearson correlation coefficients are given for all temporal resolutions. Additionally the 

Spearman correlation coefficient is given for samples that consist of 25 or less values, since 

for a small sample size the Spearman coefficient is preferable, which was mentioned in 

chapter 3.3. 
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Austria   
44.481 production hours 

2.050kW/turbine 

White Hill   
61.696 production hours  

58.000kW capacity 

Parameters Real Simulated Δ Real-Sim. Real Simulated Δ Real-Sim. 

1st Quartile 0.016 0.024 -0.008 0.023 0.093 -0.070 

Median 0.082 0.087 -0.004 0.222 0.317 -0.095 

Mean 0.202 0.176 0.026 0.354 0.405 -0.051 

3rd Quartile 0.277 0.238 0.039 0.715 0.710 0.005 

Maximum 0.993 1.000 -0.007 0.991 1.000 -0.009 

Standard Deviation 0.2656 0.2218 0.044 0.343 0.340 0.004 

Total Production 
Ratio Simulated : Real 

86.98% 114.28% 

     
Correlations  

(* Spearman coefficient for n≤25) 
95% CI 

  
95% CI 

Hourly 0.75 
 

0.745 │ 0.754 0.70 
 

0.695 │ 0.705 

Daily 0.85 
 

0.837 │ 0.862 0.80 
 

0.783 │ 0.815 

Monthly 0.94 
 

0.902 │ 0.964 0.89 
 

0.795 │ 0.919 

Seasonally 0.96 0.95* 0.902 │ 0.984 0.86 0.79* 0.688 │ 0.941 

Annually 1.00 0.71* 0.908 │ 1.000 0.98 0.64* 0.866 │ 1.000 

   

 

Mahinerangi  
17.473 production hours  

36.000kW capacity 

Te Apiti  
61.696production hours  

90.750kW capacity 

Parameters Real Simulated Δ Real-Sim. Real Simulated Δ Real-Sim. 

1st Quartile 0.020 0.058 -0.039 0.058 0.061 -0.003 

Median 0.190 0.220 -0.030 0.335 0.269 0.066 

Mean 0.323 0.336 -0.013 0.386 0.374 0.013 

3rd Quartile 0.594 0.564 0.030 0.697 0.658 0.039 

Maximum 1.000 1.000 0.000 0.997 1.000 -0.003 

Standard Deviation 0.332 0.323 0.009 0.325 0.346 -0.022 

Total Production 
Ratio Simulated : Real 

104.03% 96.67% 

     
Correlations  

(* Spearman coefficient for n≤25) 
95% CI 

  
95% CI 

Hourly 0.68 
 

0.672 │0.688 0.67 
 

0.666 │ 0.674 

Daily 0.81 
 

0.783 │ 0.834 0.74 
 

0.722 │ 0.757 

Monthly 0.92 0.90* 0.825 │ 0.965 0.81 
 

0.722 │ 0.872 

Seasonally 0.98 0.83* 0.905 │ 1.000 0.74 
 

0.512 │ 0.870 

Annually 0.95 1.00* -
4
 0.99 0.90* 0.951 │ 1.000 

Table 7: Comparison of all 4 wind farms – by capacity normalized values for upper parameters, 
ratio of simulated to real total production and Pearson correlation coefficients for several 

temporal resolutions (Spearman coefficient if n≤25), source: own table 

                                                      
4
 For the Mahinerangi wind farm the sample size (3 years) is too low for calculating the confidence intervals for 

the correlation coefficients for annual production.  
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Figure 18: Box plots for all 4 wind farms, source: own figure 

The box plots of figure 19 show and confirm the results that were presented in table 7 for 

the statistical parameters. The values used for developing the box plots are hourly 

production values which were normalized by the capacity of each wind farm. Red colour 

designates the real production and blue colour the simulated production. The box plots give 

a quick overview of the results mentioned before. It can clearly be seen, that for Austria the 

simulated production is lower and for White Hill the simulated production is higher. The 

distribution of the production within New Zealand is quite comparable, but it´s different for 

Austria. For Te Apiti and Mahinerangi the difference between simulation and real production 

is low, regarding the distribution.   
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5. DISCUSSION 

The developed simulation model can reflect the real wind power production up to a certain 

point, although the results differ quite heavily for the different wind farms and temporal 

resolutions. Since one of the main reasons for developing this simulation model is to 

estimate the wind power potential for a certain area or location in a time and cost-efficient 

way, compared to measuring wind speeds, it has to be competitive or nearly as accurate, 

regarding the quality. For this purpose, a quite high temporal resolution (i.e. hourly or at 

least daily) is necessary. The results for hourly or daily resolution, regarding the correlation, 

are not that convincing and therefore the first goal cannot be achieved by this simulation 

model. A possible use could be to make a rough estimate of a potential wind power location 

without any further or precise information about potential electricity generation. For the 

second main reason – to use the data for large scale integration studies – lower temporal 

resolutions can be sufficient in order to determine the ideal integration of wind power in the 

power system. To determine prospective integration or respectively the share of wind power 

in the power grid it is not that important to know exactly the electricity generation for each 

single hour, rather than for longer time periods, since the power grid should be able to 

buffer fluctuations up to a certain point and manage different electricity generation 

technologies – also, geographical smoothing occurs in large integration studies. Therefore, 

lower temporal resolutions (i.e. monthly or seasonally) can be sufficient, which means that 

the developed simulation model is capable to deliver valuable results for this purpose, 

although the current, simple approach should still be enhanced.  

First, tests with more production data at different locations should be developed. Also, an 

optimization of the applied approaches (i.e. interpolation to height, power curves), and bias 

correction may improve results significantly. A further enhancement could be an empirical 

derived bias correction for wind speeds (e.g. increase wind speeds frequencies of 0m/s, 

decrease wind speed frequencies from 4 up to about 10m/s and increase wind speed 

frequencies from 12m/s upwards). However, such an empirical derived optimization 

procedure depends on local measurement data and cannot be easily generated globally. 

Probably the highest influence and therefore the major source of error is the low spatial 

resolution of the MERRA-data (about 50km x 50km horizontally). Table 1 shows the 

eastward wind speeds in 50m above surface for the 3 closest points for the 3 examined wind 

farms in New Zealand. The distance to the wind farms is sometimes close, although it can 

clearly be seen, in particular for the Te Apiti wind farm, that the wind speeds differ quite 

heavily for different points at the same time. Therefore, spatial interpolation procedures 

between the MERRA grid points may further enhance the quality of results. For that 

purpose, local topography should be taken into account. Further it could be useful to 
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interpolate the wind speeds not only to a single point which is used as a representative point 

for the whole wind farm, but instead to the single wind power turbines, since the area of a 

wind farm can be quite huge (e.g. Mahinerangi 17.23km², Te Apiti 11.5km²).  

Another problem with MERRA-data is the fact that the maximum wind speeds are far too 

low. From all examined wind farms, the highest wind speed value was 21.24m/s at a turbine 

height of 70m for the Te Apiti wind farm. It has to be considered improbable, that during a 

time span of 10 years, the highest wind speed calculated for a height of 70m is only about 

24.16m/s. For the Austrian wind farm the highest observed value for 50m above surface was 

only 16.6m/s. Although higher wind speeds are not useful for wind power production (as 

production will even stop at very high wind speeds), it is obvious that the low spatial 

resolution of the MERRA-data causes smoothing effects and therefore lowers variance in 

comparison to real wind speeds. Nevertheless a study from Cannon et al. [9], which uses 

MERRA-data to quantify extreme wind power generation, states that “frequency and 

severity of extreme generation events … is found to be well reproduced by the MERRA 

derived time series”. However, the purpose of this study was to use MERRA-data for 

simulating aggregated, total Great Britain wind power production and not production in a 

single wind farm. 

A few other methodological details, like production restrictions, the simplified use of the 

power curves, the data removal or the assumption of active control of the turbines in wind 

direction had to be made. It is, however, not known if all turbines in the sample can actively 

control towards wind direction. Wind turbines also lose performance over time – a topic 

which was researched by Staffel et al. [15]. The power curves were used straight from the 

manufacturers, and were not smoothed, like [8] for example recommends. The data removal 

was made only if it was obvious that there was some problem with the production not 

caused by a lack of wind. If these time spans would not have been removed, unnecessary 

bias would have been introduced into the results. After analysing the real production data, it 

seems plausible that production restrictions are imposed on the wind farms, since the 

production frequency for higher output seems far off of what it could or should be, as 

discussed in more detail in the closing chapter. 
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6. SUMMARY AND CONCLUSION 

A simulation model for the wind power generation of 4 wind farms, 1 in Austria and 3 in New 

Zealand was developed by using MERRA reanalysis data and the power curves of the specific 

turbines installed in the wind farms. The MERRA data, gridded at a spatial resolution of 0.5° 

latitude and 0.66° longitude and resolved hourly, contains wind speeds for different heights. 

The wind velocities of the closest point of the MERRA dataset to each wind farm were 

extrapolated to the hub heights of the turbines. These wind speeds were used to feed the 

power curves and simulate the power generation of the wind farms. Afterwards the 

simulated power generation was compared to the real production data of the wind farms. 

The analysis examines hourly production as well as aggregated daily, monthly, quarterly and 

annual production. For the Austrian wind farm the total amount of production is 

underestimated and equals only 87.0% of the real production, whereby for White Hill it is 

overestimated by 14.3%. However, this overestimation could be a consequence of 

restrictions in production imposed to the operator, since the maximum production capacity 

is 58MW and the highest and second highest production (57.5MW, 56.2MW) were only 

reached once in 7 years, which is very unlikely if the wind farm is operated under normal, 

non-restricted conditions. The remaining 2 wind farms – Te Apiti and Mahinerangi – are 

covered quite well, concerning the total amount of production.  

Nevertheless, the correlation coefficients (and their confidence intervals) show rather 

unsatisfying results for some wind farms and especially for higher temporal resolutions, i.e. 

hourly or daily. Even though for lower temporal resolutions, simulation and real production 

correlate quite well, the lack of a good correlation for hourly or daily resolution cannot be 

ignored. Still, not all wind farms perform equally. The best performance, regarding the 

correlation coefficients and the confidence intervals, is achieved by the Austrian wind farm. 

The 95% confidence interval for hourly production in Austria is 0.745 – 0.754 and for daily 

production 0.837 – 0.862, which represents the highest correlation values for hourly and 

daily resolutions. The worst results are achieved for Te Apiti, which only has a 95% 

confidence interval of 0.666 – 0.674 for hourly and 0.722 – 0.757 for daily production. 

The results leave an ambivalent impression. On the one hand, the simulation model is not 

powerful enough to reflect the real wind power production in a satisfying way (regarding the 

total amount of production and the correlation values), in particular at high temporal 

resolution. MERRA reanalysis data is therefore not suitable for the assessment of individual 

locations in terms of profitability of wind turbine installations, as both the mean and the 

temporal profile of wind power production may be important, depending on the form of 

regulation. On the other hand, it can reproduce the monthly and seasonal production to a 

high extent, which is useful when the data is used in large scale integration studies. And 
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besides that, the developed model provides a basis for further research, which could result 

in an optimized and improved model that could improve on quality of simulated wind power 

production. 
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8. APPENDIX (R PROGRAM-CODES) 

8.1. READING FUNCTIONS FOR PARAMETERS 

library(ncdf4) 

rad <- pi/180 

########################## Reading Functions ########################### 

 

datum <- function(ncname) { 

  ncfile <- nc_open(ncname) 

  h <- ncvar_get(ncfile, "time") 

  d <- unlist(strsplit(ncfile$dim$time$units, " ")) 

  date <- rep(d[3],24) 

  dh <- paste(date,h) 

  x <- as.POSIXct(strptime(dh, format="%Y-%m-%d %H",tz="UTC")) 

  nc_close(ncfile) 

  return(x) 

} 

 

readu50m <- function(ncname) { 

  du50m <- "u50m" 

  ncfile <- nc_open(ncname) 

   

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 

   

  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

   

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

   

  #read the variable 
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  u50m.array <- ncvar_get(ncfile, du50m) 

   

  #Dataframe 

  u50m.vec.long <- as.vector(u50m.array) 

  u50m.mat <- matrix(u50m.vec.long, nrow = nlon * nlat, ncol = ntime) 

  lonlat <- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

   

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfu50m <- (data.frame(cbind(dista,lonlat/rad, u50m.mat))) 

  dfu50m <- dfu50m[ order(dfu50m[,1]), ] 

  names(dfu50m) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 

  return(dfu50m) 

} 

 

readv50m <- function(ncname) { 

  dv50m <- "v50m" 

  ncfile <- nc_open(ncname) 

   

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 

   

  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

   

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

   

  #read the variable 

  v50m.array <- ncvar_get(ncfile, dv50m) 

   

  #Dataframe 

  v50m.vec.long <- as.vector(v50m.array) 

  v50m.mat <- matrix(v50m.vec.long, nrow = nlon * nlat, ncol = ntime) 
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  lonlat <- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

   

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfv50m <- (data.frame(cbind(dista,lonlat/rad, v50m.mat))) 

  dfv50m <- dfv50m[ order(dfv50m[,1]), ] 

  names(dfv50m) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 

  return(dfv50m) 

} 

 

readu10m <- function(ncname) { 

  du10m <- "u10m" 

  ncfile <- nc_open(ncname) 

   

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 

   

  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

   

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

   

  #read the variable 

  u10m.array <- ncvar_get(ncfile, du10m) 

   

  #Dataframe 

  u10m.vec.long <- as.vector(u10m.array) 

  u10m.mat <- matrix(u10m.vec.long, nrow = nlon * nlat, ncol = ntime) 

  lonlat <- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

   

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 
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cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfu10m <- (data.frame(cbind(dista, lonlat/rad, u10m.mat))) 

  dfu10m <- dfu10m[ order(dfu10m[,1]), ] 

  names(dfu10m) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 

  return(dfu10m) 

} 

 

readv10m <- function(ncname) { 

  dv10m <- "v10m" 

  ncfile <- nc_open(ncname) 

   

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 

   

  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

   

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

   

  #read the variable 

  v10m.array <- ncvar_get(ncfile, dv10m) 

   

  #Dataframe 

  v10m.vec.long <- as.vector(v10m.array) 

  v10m.mat <- matrix(v10m.vec.long, nrow = nlon * nlat, ncol = ntime) 

  lonlat <- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

   

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfv10m <- (data.frame(cbind(dista, lonlat/rad, v10m.mat))) 

  dfv10m <- dfv10m[ order(dfv10m[,1]), ] 

  names(dfv10m) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 
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  return(dfv10m) 

} 

 

readu2m <- function(ncname) { 

  du2m <- "u2m" 

  ncfile <- nc_open(ncname) 

   

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 

   

  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

   

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

   

  #read the variable 

  u2m.array <- ncvar_get(ncfile, du2m) 

   

  #Dataframe 

  u2m.vec.long <- as.vector(u2m.array) 

  u2m.mat <- matrix(u2m.vec.long, nrow = nlon * nlat, ncol = ntime) 

  lonlat <- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

   

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfu2m <- (data.frame(cbind(dista, lonlat/rad, u2m.mat))) 

  dfu2m <- dfu2m[ order(dfu2m[,1]), ] 

  names(dfu2m) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 

  return(dfu2m) 

} 

 

readv2m <- function(ncname) { 

  dv2m <- "v2m" 
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  ncfile <- nc_open(ncname) 

   

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 

   

  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

   

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

   

  #read the variable 

  v2m.array <- ncvar_get(ncfile, dv2m) 

   

  #Dataframe 

  v2m.vec.long <- as.vector(v2m.array) 

  v2m.mat <- matrix(v2m.vec.long, nrow = nlon * nlat, ncol = ntime) 

  lonlat <- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

   

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfv2m <- (data.frame(cbind(dista, lonlat/rad, v2m.mat))) 

  dfv2m <- dfv2m[ order(dfv2m[,1]), ] 

  names(dfv2m) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 

  return(dfv2m) 

} 

 

readdisph <- function(ncname) { 

  disph <- "disph" 

  ncfile <- nc_open(ncname) 

   

  #Longitude 

  longitude <- ncvar_get(ncfile, "longitude", verbose = F) 

  nlon <- dim(longitude) 
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  #Latitude 

  latitude <- ncvar_get(ncfile, "latitude", verbose = F) 

  nlat <- dim(latitude) 

   

  #Time 

  time <- ncvar_get(ncfile, "time") 

  tunits <- ncatt_get(ncfile, "time", "units") 

  ntime <- dim(time) 

   

  #read the variable 

  disph.array <- ncvar_get(ncfile, "disph") 

   

  #Dataframe 

  disph.vec.long <- as.vector(disph.array) 

  disph.mat <- matrix(disph.vec.long, nrow = nlon * nlat, ncol = ntime) 

  lonlat <<- expand.grid(longitude,latitude) 

  lonlat <- lonlat*rad 

   

  # Distance between points 

  dista <- 6378.388*acos(sin(lat) * sin(lonlat[,2]) + cos(lat) * 

cos(lonlat[,2]) * cos(lonlat[,1]-long)) 

  dfdisph <- (data.frame(cbind(dista, lonlat/rad, disph.mat))) 

  dfdisph <- dfdisph[ order(dfdisph[,1]), ] 

  names(dfdisph) <- c("dista", "Longitude", "Latitude", seq(1:24)) 

  nc_close(ncfile) 

  return(dfdisph) 

} 
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8.2. SIMULATION OF WHITE HILL 

library(ncdf4) 

setwd ("C:/Users/mesa-/OneDrive/Master/Masterarbeit/MERRA/MERRA Wind 

Neuseeland") 

 

######################### Windpark White Hill ######################### 

#-----------------------------------------------------------------------# 

############# 29 V90 Turbinen seit Beginn (01.06.2007) in Betrieb 

########## 

 

# https://www.meridianenergy.co.nz/about-us/our-power-stations/wind/white-

hill 

# http://www.windenergy.org.nz/white-hill-wind-farm 

# Operator of White Hill 

 

# Degree East / North 

# 

https://tools.wmflabs.org/geohack/geohack.php?pagename=White_Hill_Wind_Farm

&params=45_45_9_S_168_16_18_E_type:landmark_region:NZ 

 

long <- 168.271667*rad 

lat <- -45.7525*rad 

 

# Lists for variables and all files 

 

NZfiles <- list.files(pattern = "*.nc") 

Listdate <- lapply(NZfiles, datum) 

Listu50mWH <- lapply(NZfiles, readu50m) 

Listv50mWH <- lapply(NZfiles, readv50m) 

Listu10mWH <- lapply(NZfiles, readu10m) 

Listv10mWH <- lapply(NZfiles, readv10m) 

Listu2mWH <- lapply(NZfiles, readu2m) 

Listv2mWH <- lapply(NZfiles, readv2m) 

ListdisphWH <- lapply(NZfiles, readdisph) 

 

# Nearest Neighbor Interpolation Matrix for all files 

 

NNdate <- unlist(Listdate) 

NNWHu50m <- unlist(sapply(Listu50mWH, function(d) d[1,4:27])) 

NNWHv50m <- unlist(sapply(Listv50mWH, function(d) d[1,4:27])) 
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NNWHu10m <- unlist(sapply(Listu10mWH, function(d) d[1,4:27])) 

NNWHv10m <- unlist(sapply(Listv10mWH, function(d) d[1,4:27])) 

NNWHu2m <- unlist(sapply(Listu2mWH, function(d) d[1,4:27])) 

NNWHv2m <- unlist(sapply(Listv2mWH, function(d) d[1,4:27])) 

NNWHdisph <- unlist(sapply(ListdisphWH, function(d) d[1,4:27])) 

 

 

#######################Empty Workspace################ 

rm(Listu2mWH,Listv2mWH,Listu10mWH,Listv10mWH,Listv50mWH,Listu50mWH,Listdisp

hWH) 

 

 

# MERRA date 

MD <- as.POSIXct(NNdate, origin = "1970-01-01 00:00:00 UTC", 

tz="Etc/Universal") 

 

# Wind speeds Nearest Neighbor 

 

WHuv50 <- sqrt(NNWHu50m^2+NNWHv50m^2) 

WHuv10 <- sqrt(NNWHu10m^2+NNWHv10m^2) 

WHuv2 <- sqrt(NNWHu2m^2+NNWHv2m^2) 

 

#### WH MERRA-DF ### 

MWH <- data.frame(MD,WHuv50,WHuv10,WHuv2,NNWHdisph) 

 

# NZ Windfarm - data hourly and in MW! 

 

setwd("C:/Users/mesa-/OneDrive/Master/Masterarbeit") 

NZ.csv <- read.csv("DataNZAG_windpower.csv") 

 

NZdate <- as.POSIXct(strptime(NZ.csv[,1], format="%Y-%m-%d 

%H:%M:%S",tz="NZ")) 

WH <- na.omit(data.frame(NZ.csv[,6]*1000,NZdate)) 

WH[,2] <- as.POSIXct(WH[,2], origin = "1970-01-01 00:00:00 UTC", 

tz="Pacific/Auckland") 

names(WH) <- c("WH Production","NZdate") 

 

# Merge Data-Frames and drop out data 

# first 3000 > Starting Process , 31000 - 32750 maintenance > drop out 

 

WHDF <- merge(WH, MWH, by.x = "NZdate", by.y = "MD") 

length(WHDF[,1]) 
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WHDF <- WHDF[c(3001:30999,32751:51122),] 

 

### check for timezone/merge 

utils::View(MWH) 

head(WHDF) 

# check first row of head(WHDF) > 4.10.07 17:00 uv50=10.07 and same date of 

MWH >>> different values > 13 hours earlier > same value 

 

 

#######################  Nearest Neighbor Modelling 

########################## 

 

# Power Curve Vestas V80 

# turbine model  Vestas: V80-2.0MW  

https://en.wikipedia.org/wiki/White_Hill_Wind_Farm 

# Data  http://www.kulak.com.pl/Wiatraki/pdf/vestas%20v80.pdf 

# Paper Staffel Power Curves 

V80power <- 

c(0,0,0,66.3,152,280,457,690,978,1296,1598,1818,1935,1980,1995,1999,2000,20

00,2000,2000,2000,2000,2000,2000,2000) 

V80wind <- 

c(0,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25) 

 

# alpha / friction coefficient 

a1050WH <- (log(WHDF[,3])-log(WHDF[,4]))/(log(50)-log(10+WHDF[,6])) 

 

# Wind speeds with power law from 50 to 67 extrapolated 

v6750WH <- WHDF[,3]*(67/50)^a1050WH 

matplot(data.frame(v6750WH,WHDF[,3]),type="l") 

 

 

# Function for power curve 

fWH <- approxfun(V80wind, V80power) 

WHcurve <- curve(fWH(x),0, 25, col = "green2", lwd=4,main="Vestas V80-

2.0MW", xlab="Wind speed m/s", ylab="Power in kW", n=25,font=4) 

 

# Production 

WHP <- sum(WHDF[,2])              # Sum White Hill real produktion (29 

Turbines) 

WHpl1 <- sapply(v6750WH, FUN = "fWH")    # modelled production with power 

law (alpha) for 1 turbine 

WHpl <- 29*WHpl1          # hourly modelled Production 29 Turbines 

WHplsum <- sum(WHpl) # sum of modelled production 
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WHplsum/WHP # real:modelled production (sum) 

 

#Correlation hourly 

cor(WHDF[,2],WHpl) 
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8.3. ANALYSIS OF WHITE HILL 

############ White Hill ############# 

 

# Dataframe with date, real and modelled production 

WHA <-cbind(WHDF[,1:2],WHpl) 

WHA[,1] <- as.POSIXct(WHDF[,1],origin = "1970-01-01 10:00:00") 

names(WHA) <- c("Datum","Echt","Modell") 

head(WHA) 

head(WHDF) 

 

# List / Character White Hill 

WHY <- format(WHA[,1],"%Y") 

WHYm<-format(WHA[,1],"%Y%m") 

WHYmd<-format(WHA[,1],"%Y%m%d") 

WHm<-format(WHA[,1],"%m") 

WHd<-format(WHA[,1],"%d") 

WHq<-quarter(WHA[,1],with_year = TRUE) 

utils::View(WHm) 

 

# Aggregte White Hill 

ag_yearWH<- aggregate(WHA[,2:3],by=list(WHY),sum) 

ag_monWH<-aggregate(WHA[,2:3],by=list(WHYm),sum) 

ag_dayWH<-aggregate(WHA[,2:3],by=list(WHYmd),sum) 

ag_seasWH<-aggregate(WHA[,2:3],by=list(WHm),sum) 

ag_dWH<-aggregate(WHA[,2:3],by=list(WHd),sum) 

ag_qWH<-aggregate(WHA[,2:3],by=list(WHq),sum) 

 

#length 

length(WHDF[,2]) #46371 Stunden 

length(ag_dayWH[,2]) #1934 tage 

length(ag_monWH[,2]) #65 Monate 

length(ag_qWH[,2]) #22 Quartale 

length(ag_yearWH[,2]) #7Jahre 

 

########### Graphics / correlations White Hill  ############## 

# years 

matplot(ag_yearWH[,2:3],type="l") 

cor(ag_yearWH[,2:3]) 
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cor(ag_yearWH[,2:3],method="spearman") 

 

# single months 

matplot(ag_monWH[,2:3],type="l") 

matplot(ag_monWH[,2:3]/1000,type="l",ylab="Production in MWh", 

        lwd = 3,col = c("lightslateblue","red"),lty = 1,main="Monthly 

Production White Hill", 

        xlab="Months",cex.axis=1.25,cex.lab=1.25) 

legend("topright",c("Simulated","Real"),col=c("Red","lightslateblue"),lwd=1

0) 

legend("top",paste("r","=","0.8860213")) 

cor(ag_monWH[,2:3]) 

 

# single days 

matplot(ag_dayWH[,2:3],type="l") 

cor(ag_dayWH[,2:3]) 

 

# aggregated months 

matplot(ag_seasWH[,2:3],type="l") 

cor(ag_seasWH[,2:3]) 

 

# aggregated calendar days (1.-31.) 

matplot(ag_dWH[,2:3],type="l") 

cor(ag_dWH[,2:3]) 

 

# aggregated quarters 

matplot(ag_qWH[,2:3],type="l") 

cor(ag_qWH[,2:3]) 

cor(ag_qWH[,2:3],method="spearman") 

 

#hours 

cor(WHA[,2:3]) 

 

#### Modal Value, Skewness, RMSE, SD 

library(modeest) 

mlv(WHA[,2],method="naive") 

mlv(WHA[,3],method="naive") 

skewness(WHA[,2]) 

 

# White Hill capacity 58000kW 

WHR<- WHA[,2]/58000 
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WHS<- WHA[,3]/58000 

summary(WHR)-summary(WHS) 

sd(WHR) 

sd(WHS) 

sd(WHR)-sd(WHS) 

summary(WHR) 

summary(WHS) 

CIr(0.7,46371,level=0.95)  # hourly 

CIr(0.8,1934,level=0.95)  # daily 

CIr(0.87,65,level=0.95) # monthly 

CIr(0.86,22,level=0.95) # seasonally 

CIr(0.98,7,level=0.95) # annually 

################ White Hill 

 

# distance and u50m value table 

setwd ("C:/Users/mesa-/OneDrive/Master/Masterarbeit/MERRA/MERRA Wind 

Neuseeland") 

nc <- "MERRA300.prod.assim.tavg1_2d_slv_Nx.20050101.SUB.nc" 

long <- 168.271667*rad 

lat <- -45.7525*rad 

WHdist <- readu50m(nc) 

WHdist[1:5,1:6] 

 

# production in hours // assumption start-up time + maintainance times 

plot(WH[,1],type="l", col="cadetblue4", lty=3,main= "Electricity production 

White Hill Wind Farm from 01.06.2007 to 31.03.2013", xlab = "Hours", 

ylab="Production in kWh") 

####### first 3000h start-up , maintainance from 31000 to 32750 

plot(NNDFWH[33000:33750,6],type="l") 

 

# Maxima 

which.max(WH[,1]) 

WH[18975,1] 

WH[,1][WH[,1]>56000] 

 

# histogram 

 

par(mfrow=c(1,1)) 

WHhist <- hist(WHA[,3], breaks=seq(0,60000,by=3000),main="White Hill 

Production",xlab="kWh",col = "red") 

WHplhist <- hist(WHA[,2],breaks=seq(0,60000,by=3000),main="White Hill 

Simulated Production",xlab="",col=mycol,add=T) 
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legend("topright",c("Simulated","Real"),WHhist$counts-

WHplhist$counts,col="green", lwd=10) 

legend("topright",c("Simulated", "Real"),col=c("red",mycol),lwd=10) 

sum(WHA[,2]>56000) 

 

mycol <- rgb(0, 100, 255, max = 255, alpha = 100, names = "blue50") 

 

# histogram 2d contour  package plot_ly 

e1<-plot_ly(x=WHA[,2],type="histogram") 

e2<-plot_ly(x=WHA[,3],type="histogram") 

e3<-

plot_ly(x=WHA[,2],y=WHA[,3],type="histogram2dcontour",autocontour=FALSE, 

            contours = list(coloring="fill",start=0,end=800,size=50)) 

e3 

e1 

e2 

layout(e3, 

       title="2dcontourplot // Bins = 20 (0-400)", 

       yaxis=list(title="Simulated Production", rangemode="nonnegative"), 

       xaxis=list(title="Real Production", rangemode="nonnegative") 

) 

 

xaxis = list(rangemode = "tozero"), 

yaxis = list(rangemode = "nonnegative")) 


